The variational iteration method for solving n-th order fuzzy differential equations

被引:37
作者
Jafari, Hossein [1 ]
Saeidy, Mohammad [1 ]
Baleanu, Dumitru [2 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
[2] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2012年 / 10卷 / 01期
关键词
variational iteration method; fuzzy number; nth-order fuzzy linear differential equation; EXISTENCE; BURGERS;
D O I
10.2478/s11534-011-0083-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The variational iteration method (VIM) proposed by Ji-Huan He is a new analytical method for solving linear and nonlinear equations. In this paper, the variational iteration method has been applied in solving nth-order fuzzy linear differential equations with fuzzy initial conditions. This method is illustrated by solving several examples.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 39 条
[1]  
Abbasbandy S., 2002, Computational Methods in Applied Mathematics, V2, DOI 10.2478/cmam-2002-0006
[2]  
Abbasbandy S., 2011, Mathematical & Computational Applications, V16, P819
[3]   New applications of variational iteration method [J].
Abdou, MA ;
Soliman, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 211 (1-2) :1-8
[4]   Variational iteration method for solving Burger's and coupled Burger's equations [J].
Abdou, MA ;
Soliman, AA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (02) :245-251
[5]   Nth-order fuzzy linear differential equations [J].
Allahviranloo, T. ;
Ahmady, E. ;
Ahmady, N. .
INFORMATION SCIENCES, 2008, 178 (05) :1309-1324
[6]   Numerical solution of fuzzy differential equations by predictor-corrector method [J].
Allahviranloo, T. ;
Ahmady, N. ;
Ahmady, E. .
INFORMATION SCIENCES, 2007, 177 (07) :1633-1647
[7]  
[Anonymous], 2006, SIMULATING CONTINUOU
[8]  
[Anonymous], INF SCI
[9]   First order linear fuzzy differential equations under generalized differentiability [J].
Bede, Barnabas ;
Rudas, Imre J. ;
Bencsik, Attila L. .
INFORMATION SCIENCES, 2007, 177 (07) :1648-1662
[10]  
Buckley JJ, 2000, FUZZY SET SYST, V110, P43, DOI 10.1016/S0165-0114(98)00141-9