Limit cycles near an eye-figure loop in some polynomial Lienard systems

被引:4
作者
Bakhshalizadeh, A. [1 ]
Asheghi, R. [1 ]
Zangeneh, H. R. Z. [1 ]
Gashti, M. Ezatpanah [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Lienard system; Eye-figure loop; Limit cycle; Abelian integral; HAMILTONIAN-SYSTEMS; CUSPIDAL LOOP; BIFURCATIONS; NUMBER;
D O I
10.1016/j.jmaa.2017.05.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the number of limit cycles in the family dH - epsilon omega = 0, where H = y(2)/2 - integral(x)(0) g(u)du, omega = yf(x)dx, with g(x) = x(x(2) - 1)(x(2) - 1/4)(2), and f (x) an even polynomial of degree 10. We will consider mainly the bifurcation of limit cycles near the eye-figure loop and the center of dH = 0. Our investigation focuses on the lower bound of the maximal number of limit cycles for these systems. In particular, we show that the perturbed system can have at least 8 limit cycles when deg(f(x)) = 10. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:500 / 515
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1928, REV GENERALE LELECTR, DOI DOI 10.1016/J.JWEIA.2013.09.002
[2]  
[Anonymous], 2006, J SHANGHAI NORM U NA
[3]   Limit cycles in a Lienard system with a cusp and a nilpotent saddle of order 7 [J].
Asheghi, R. ;
Bakhshalizadeh, A. .
CHAOS SOLITONS & FRACTALS, 2015, 73 :120-128
[4]   THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :359-366
[5]   Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces [J].
Christopher, C ;
Lynch, S .
NONLINEARITY, 1999, 12 (04) :1099-1112
[6]  
Han M., 1999, Ann. Differ. Equ., V15, P113
[7]   Limit Cycles Near Homoclinic and Heteroclinic Loops [J].
Han, Maoan ;
Yang, Junmin ;
Tarta, Alexandrina -Alina ;
Gao, Yang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) :923-944
[8]   On the number of limit cycles of polynomial Lienard systems [J].
Han, Maoan ;
Romanovski, Valery G. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) :1655-1668
[9]   HOPF BIFURCATIONS FOR NEAR-HAMILTONIAN SYSTEMS [J].
Han, Maoan ;
Yang, Junmin ;
Yu, Pei .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12) :4117-4130
[10]   Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system [J].
Han, Maoan ;
Zang, Hong ;
Yang, Junmin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :129-163