Phase relations in the K2CO3-FeCO3 and MgCO3-FeCO3 systems at 6 GPa and 900-1700°C

被引:15
|
作者
Shatskiy, Anton [1 ,2 ]
Litasov, Konstantin D. [1 ,2 ]
Ohtani, Eiji [3 ]
Borzdov, Yuri M. [1 ]
Khmelnikov, Aleksandr I. [1 ]
Palyanov, Yuri N. [1 ,2 ]
机构
[1] Russian Acad Sci, VS Sobolev Inst Geol & Mineral, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Tohoku Univ, Dept Earth & Planetary Mat Sci, Sendai, Miyagi 9808578, Japan
基金
俄罗斯科学基金会;
关键词
experimental petrology; phase relations; carbonates; high pressure; high temperature; carbonate melt; partial melting; potassium iron carbonate; siderite melting; HIGH-PRESSURE; CARBONATED ECLOGITE; K-CYMRITE; THERMODYNAMIC PROPERTIES; EXPERIMENTAL CONSTRAINTS; MELTING EXPERIMENTS; MINERAL INCLUSIONS; DIAMOND FORMATION; HIGH-TEMPERATURE; KIMBERLITE PIPE;
D O I
10.1127/ejm/2015/0027-2452
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
The phase relations in the K2CO3 FeCO3 system were studied in multianvil experiments using graphite capsules at 6 GPa and 900-1400 degrees C. Subsolidus assemblages comprise the stability fields of K2CO3 + K2Fe(CO3)(2) and K2Fe(CO3)(2) + siderite with the transition boundary at X(K2CO3) = 50 mol%. The K2CO3-K2Fe(CO3)(2) and K2Fe(CO3)(2)-FeCO3 eutectics are established at 1100 degrees C and 65 mol% and at similar to 1150 degrees C and 46 mol% K2CO3, respectively. Siderite is a subliquidus phase at 1400 degrees C at X(K2CO3) <24 mol%. Similar phase relations were established in the K2CO3-MgCO3 system, which has two eutectics at 1200 degrees C and 74 mol% and at similar to 1250 degrees C and 48 mol% K2CO3, respectively. The natural siderite used in the present study contained 6 mol% MnCO3 and 7 mol% MgCO3. Although the obtained Fe-bearing carbonate phases exhibit unifoini Mn/(Fe + Mn + Mg) ratio, magnesium tends to redistribute into the solid phases K2Fe(CO3)(2) or siderite. At 1200 degrees C and X(K2CO3) =50 mol%, the K2Fe0.88Mn0.06Mg0.06(CO3)(2) melt coexists with the K2Fe0.78Mn0.06Mg0.16(CO3)(2) compound. Assuming continuous solid solution between K2Fe(CO3)(2) and K2Mg(CO3)(2), the K2Fe(CO3)(2) end-member should melt congruently slightly below 1200 degrees C, which is about 50 degrees lower than the melting point of K2Mg(CO3)(2). The siderite-magnesite system was studied at 6 GPa and 900-1700 degrees C. Complete solid solution is recorded between Fe0.94Mn0.06CO3 siderite and magnesite. At X(MgCO3) = 7 mol% and 1600 degrees C, the (Fe0.90Mn0.06Mg0.04)CO3 partial melt coexists with (Fe0.86Mn0.06Mg0.08)CO3 siderite, whereas at X(MgCO3) = 26 and 35 mol%, the (Fe0.71Mn0.06Mg0.23)CO3 partial melt coexists with (Fe0.51Mn0.06Mg0.43)CO3 siderite. Based on these data, Fe0.94Mn0.06CO3 siderite should melt slightly below 1600 degrees C, i.e. 300 degrees lower than magnesite. Development of bubbles in the quenched melt at X(MgCO3) = 7 mol% and 1700 degrees C suggests incongruent melting of siderite according to the reaction: siderite = liquid + CO2 fluid.
引用
收藏
页码:487 / 499
页数:13
相关论文
共 50 条
  • [21] Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa
    Anna Spivak
    Natalia Solopova
    Valerio Cerantola
    Elena Bykova
    Egor Zakharchenko
    Leonid Dubrovinsky
    Yuriy Litvin
    Physics and Chemistry of Minerals, 2014, 41 : 633 - 638
  • [22] Melting and subsolidus phase relations in the system Na2CO3-MgCO3±H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle
    Shatskiy, Anton
    Gavryushkin, Pavel N.
    Sharygin, Igor S.
    Litasov, Konstantin D.
    Kupriyanov, Igor N.
    Higo, Yuji
    Borzdov, Yuri M.
    Funakoshi, Ken-Ichi
    Palyanov, Yuri N.
    Ohtani, Eiji
    AMERICAN MINERALOGIST, 2013, 98 (11-12) : 2172 - 2182
  • [23] Melting relations in the system FeCO3–MgCO3 and thermodynamic modelling of Fe–Mg carbonate melts
    Nathan Kang
    Max W. Schmidt
    Stefano Poli
    James A. D. Connolly
    Ettore Franzolin
    Contributions to Mineralogy and Petrology, 2016, 171
  • [24] The equilibrium boundary of the reaction Mg3Al2Si3O12+3CO2 = Al2SiO5+2SiO2+3MgCO3 at 3-6 GPa
    Vinogradova, Yulia G.
    Shatskiy, Anton
    Arefiev, Anton V.
    Litasov, Konstantin D.
    AMERICAN MINERALOGIST, 2024, 109 (02) : 384 - 391
  • [25] Phase relations in the system MgSiO3-Al2O3 up to 52 GPa and 2000 K
    Liu, Zhaodong
    Irifune, Tetsuo
    Nishi, Masayuki
    Tange, Yoshinori
    Arimoto, Takeshi
    Shinmei, Toru
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2016, 257 : 18 - 27
  • [26] The System K2CO3-CaCO3-MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere
    Arefiev, Anton, V
    Shatskiy, Anton
    Podborodnikov, Ivan, V
    Bekhtenova, Altyna
    Litasov, Konstantin D.
    MINERALS, 2019, 9 (05):
  • [27] The MgCO3-CaCO3-Li2CO3-Na2CO3-K2CO3 melts: Thermodynamics and transport properties by atomistic simulations
    Desmaele, Elsa
    Sator, Nicolas
    Vuilleumier, Rodolphe
    Guillot, Bertrand
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (21)
  • [28] The NaCl-CaCO3 and NaCl-MgCO3 systems at 6 GPa: Link between saline and carbonatitic diamond forming melts
    Shatskiy, Anton
    Podborodnikov, Ivan V.
    Fedoraeva, Anastasia S.
    Arefiev, Anton, V
    Bekhtenova, Altyna
    Litasov, Konstantin D.
    AMERICAN MINERALOGIST, 2023, 108 (04) : 709 - 718
  • [29] New data on the system Na2CO3-CaCO3-MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere
    Podborodnikov, Ivan, V
    Shatskiy, Anton
    Arefiev, Anton, V
    Bekhtenova, Altyna
    Litasov, Konstantin D.
    CHEMICAL GEOLOGY, 2019, 515 : 50 - 60
  • [30] Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K
    Arimoto, Takeshi
    Greaux, Steeve
    Irifune, Tetsuo
    Zhou, Chunyin
    Higo, Yuji
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2015, 246 : 1 - 8