Phase relations in the K2CO3-FeCO3 and MgCO3-FeCO3 systems at 6 GPa and 900-1700°C

被引:15
|
作者
Shatskiy, Anton [1 ,2 ]
Litasov, Konstantin D. [1 ,2 ]
Ohtani, Eiji [3 ]
Borzdov, Yuri M. [1 ]
Khmelnikov, Aleksandr I. [1 ]
Palyanov, Yuri N. [1 ,2 ]
机构
[1] Russian Acad Sci, VS Sobolev Inst Geol & Mineral, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Tohoku Univ, Dept Earth & Planetary Mat Sci, Sendai, Miyagi 9808578, Japan
基金
俄罗斯科学基金会;
关键词
experimental petrology; phase relations; carbonates; high pressure; high temperature; carbonate melt; partial melting; potassium iron carbonate; siderite melting; HIGH-PRESSURE; CARBONATED ECLOGITE; K-CYMRITE; THERMODYNAMIC PROPERTIES; EXPERIMENTAL CONSTRAINTS; MELTING EXPERIMENTS; MINERAL INCLUSIONS; DIAMOND FORMATION; HIGH-TEMPERATURE; KIMBERLITE PIPE;
D O I
10.1127/ejm/2015/0027-2452
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
The phase relations in the K2CO3 FeCO3 system were studied in multianvil experiments using graphite capsules at 6 GPa and 900-1400 degrees C. Subsolidus assemblages comprise the stability fields of K2CO3 + K2Fe(CO3)(2) and K2Fe(CO3)(2) + siderite with the transition boundary at X(K2CO3) = 50 mol%. The K2CO3-K2Fe(CO3)(2) and K2Fe(CO3)(2)-FeCO3 eutectics are established at 1100 degrees C and 65 mol% and at similar to 1150 degrees C and 46 mol% K2CO3, respectively. Siderite is a subliquidus phase at 1400 degrees C at X(K2CO3) <24 mol%. Similar phase relations were established in the K2CO3-MgCO3 system, which has two eutectics at 1200 degrees C and 74 mol% and at similar to 1250 degrees C and 48 mol% K2CO3, respectively. The natural siderite used in the present study contained 6 mol% MnCO3 and 7 mol% MgCO3. Although the obtained Fe-bearing carbonate phases exhibit unifoini Mn/(Fe + Mn + Mg) ratio, magnesium tends to redistribute into the solid phases K2Fe(CO3)(2) or siderite. At 1200 degrees C and X(K2CO3) =50 mol%, the K2Fe0.88Mn0.06Mg0.06(CO3)(2) melt coexists with the K2Fe0.78Mn0.06Mg0.16(CO3)(2) compound. Assuming continuous solid solution between K2Fe(CO3)(2) and K2Mg(CO3)(2), the K2Fe(CO3)(2) end-member should melt congruently slightly below 1200 degrees C, which is about 50 degrees lower than the melting point of K2Mg(CO3)(2). The siderite-magnesite system was studied at 6 GPa and 900-1700 degrees C. Complete solid solution is recorded between Fe0.94Mn0.06CO3 siderite and magnesite. At X(MgCO3) = 7 mol% and 1600 degrees C, the (Fe0.90Mn0.06Mg0.04)CO3 partial melt coexists with (Fe0.86Mn0.06Mg0.08)CO3 siderite, whereas at X(MgCO3) = 26 and 35 mol%, the (Fe0.71Mn0.06Mg0.23)CO3 partial melt coexists with (Fe0.51Mn0.06Mg0.43)CO3 siderite. Based on these data, Fe0.94Mn0.06CO3 siderite should melt slightly below 1600 degrees C, i.e. 300 degrees lower than magnesite. Development of bubbles in the quenched melt at X(MgCO3) = 7 mol% and 1700 degrees C suggests incongruent melting of siderite according to the reaction: siderite = liquid + CO2 fluid.
引用
收藏
页码:487 / 499
页数:13
相关论文
共 50 条
  • [1] Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900-1700 °C and its relation to the system CaCO3-FeCO3-MgCO3
    Shatskiy, Anton
    Borzdov, Yuri M.
    Litasov, Konstantin D.
    Kupriyanov, Igor N.
    Ohtani, Eiji
    Palyanov, Yuri N.
    AMERICAN MINERALOGIST, 2014, 99 (04) : 773 - 785
  • [2] The system Na2CO3-FeCO3 at 6 GPa and its relation to the system Na2CO3-FeCO3-MgCO3
    Shatskiy, Anton
    Rashchenko, Sergey V.
    Ohtani, Eiji
    Litasov, Konstantin D.
    Khlestov, Mikhail V.
    Borzdov, Yuri M.
    Kupriyanov, Igor N.
    Sharygin, Igor S.
    Palyanov, Yuri N.
    AMERICAN MINERALOGIST, 2015, 100 (01) : 130 - 137
  • [3] Raman study of MgCO3-FeCO3 carbonate solid solution at high pressures up to 55 GPa
    Spivak, Anna
    Solopova, Natalia
    Cerantola, Valerio
    Bykova, Elena
    Zakharchenko, Egor
    Dubrovinsky, Leonid
    Litvin, Yuriy
    PHYSICS AND CHEMISTRY OF MINERALS, 2014, 41 (08) : 633 - 638
  • [4] Phase relations on the K2CO3-CaCO3-MgCO3 join at 6 GPa and 900-1400 °C: Implications for incipient melting in carbonated mantle domains
    Shatskiy, Anton
    Litasov, Konstantin D.
    Palyanov, Yuri N.
    Ohtani, Eiji
    AMERICAN MINERALOGIST, 2016, 101 (1-2) : 437 - 447
  • [5] The system K2CO3-MgCO3 at 6 GPa and 900-1450 °C
    Shatskiy, Anton
    Sharygin, Igor S.
    Gavryushkin, Pavel N.
    Litasov, Konstantin D.
    Borzdov, Yuri M.
    Shcherbakova, Anastasia V.
    Higo, Yuji
    Funakoshi, Ken-ichi
    Palyanov, Yuri N.
    Ohtani, Eiji
    AMERICAN MINERALOGIST, 2013, 98 (8-9) : 1593 - 1603
  • [6] Phase relationships in the system K2CO3-CaCO3 at 6 GPa and 900-1450 °C
    Shatskiy, Anton
    Borzdov, Yuri M.
    Litasov, Konstantin D.
    Sharygin, Igor S.
    Palyanov, Yuri N.
    Ohtani, Eiji
    AMERICAN MINERALOGIST, 2015, 100 (01) : 223 - 232
  • [7] Melting and subsolidus phase relations in the system K2CO3-MgCO3 at 3GPa
    Arefiev, Anton V.
    Shatskiy, Anton
    Podborodnikov, Ivan V.
    Litasov, Konstantin D.
    HIGH PRESSURE RESEARCH, 2018, 38 (04) : 422 - 439
  • [8] The K2CO3-CaCO3-MgCO3 System at 6 GPa: Implications for Diamond Forming Carbonatitic Melts
    Arefiev, Anton V.
    Shatskiy, Anton
    Podborodnikov, Ivan V.
    Litasov, Konstantin D.
    MINERALS, 2019, 9 (09)
  • [9] Melting relations of multicomponent carbonate MgCO3-FeCO3-CaCO3-Na2CO3 system at 12-26 GPa: application to deeper mantle diamond formation
    Spivak, Anna
    Solopova, Natalia
    Dubrovinsky, Leonid
    Litvin, Yuriy
    PHYSICS AND CHEMISTRY OF MINERALS, 2015, 42 (10) : 817 - 824
  • [10] Revision of the CaCO3-MgCO3 phase diagram at 3 and 6 GPa
    Shatskiy, Anton
    Podborodnikov, Ivan V.
    Arefiev, Anton V.
    Minin, Daniil A.
    Chanyshev, Artem D.
    Litasov, Konstantin D.
    AMERICAN MINERALOGIST, 2018, 103 (03) : 441 - 452