Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study

被引:93
|
作者
Zhao, Yu [3 ,4 ]
Wu, Xiaojun [1 ,2 ]
Yang, Jinlong [2 ]
Zeng, Xiao Cheng [3 ,4 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[3] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[4] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
关键词
GRAPHENE; NANOTUBES; RESISTANCE; NANOSHEETS; POINTS; OXIDE;
D O I
10.1039/c2cp40081b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) hexagonal boron-nitride oxide (h-BNO) is a structural analogue of graphene oxide. Motivated by recent experimental studies of graphene oxide, we have investigated the chemical oxidation of 2D h-BN sheet and the associated electronic properties of h-BNO. Particular emphasis has been placed on the most favorable site(s) for chemisorption of atomic oxygen, and on the migration barrier for an oxygen atom hopping to the top, bridge, or hollow site on the h-BN surface, as well as the most likely pathway for the dissociation of an oxygen molecule on the h-BN surface. We find that when an oxygen atom migrates on the h-BN surface, it is most likely to be over an N atom, but confined by three neighbor B atoms (forming a triangle ring). In general, chemisorption of an oxygen atom will stretch the B-N bond, and under certain conditions may even break the B-N bond. Depending on the initial location of the first chemisorbed O atom, subsequent oxidation tends to form an O domain or O chain on the h-BN sheet. The latter may lead to a synthetic strategy for the unzipping of the h-BN sheet along a zigzag direction. A better understanding of the oxidation of h-BN sheet has important implications for tailoring the properties of the h-BN sheet for applications.
引用
收藏
页码:5545 / 5550
页数:6
相关论文
共 50 条
  • [41] First-principles study of plutonium adsorption on perfect and defective graphene and hexagonal boron nitride
    Li, Shujing
    Zhou, Mei
    Li, Menglei
    Wang, Xiaohui
    Zheng, Fawei
    Zhang, Ping
    MATERIALS RESEARCH EXPRESS, 2018, 5 (05):
  • [42] First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice
    Wang, Xiao-Ming
    Lu, Shu-Shen
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 3025 - 3028
  • [43] Defect and impurity properties of hexagonal boron nitride: A first-principles calculation
    Huang, Bing
    Lee, Hoonkyung
    PHYSICAL REVIEW B, 2012, 86 (24)
  • [44] First-principles prediction of thermal conductivity of bulk hexagonal boron nitride
    Guo, Ziqi
    Han, Zherui
    Alkandari, Abdulaziz
    Khot, Krutarth
    Ruan, Xiulin
    APPLIED PHYSICS LETTERS, 2024, 124 (16)
  • [45] First-principles calculations of structural and elastic properties of hexagonal boron nitride
    Xiao, Liu
    He, Wenjun
    Yin, Yansheng
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 1337 - 1340
  • [46] A FIRST-PRINCIPLES STUDY OF LITHIUM AND SODIUM STORAGE IN TWO-DIMENSIONAL GRAPHITIC CARBON NITRIDE
    Wang, Meng-yao
    Li, Jia
    CARBON, 2019, 145 : 772 - 772
  • [47] Stability and properties of the two-dimensional hexagonal boron nitride monolayer functionalized by hydroxyl (OH) radicals: a theoretical study
    Hong-mei Wang
    Yue-jie Liu
    Hong-xia Wang
    Jing-xiang Zhao
    Qing-hai Cai
    Xuan-zhang Wang
    Journal of Molecular Modeling, 2013, 19 : 5143 - 5152
  • [48] A first-principles study of lithium and sodium storage in two-dimensional graphitic carbon nitride
    Wang, Meng-yao
    Li, Jia
    NEW CARBON MATERIALS, 2018, 33 (06) : 510 - 515
  • [49] Stability and properties of the two-dimensional hexagonal boron nitride monolayer functionalized by hydroxyl (OH) radicals: a theoretical study
    Wang, Hong-mei
    Liu, Yue-jie
    Wang, Hong-xia
    Zhao, Jing-xiang
    Cai, Qing-hai
    Wang, Xuan-zhang
    JOURNAL OF MOLECULAR MODELING, 2013, 19 (12) : 5143 - 5152
  • [50] Two-Dimensional Boron-Rich Monolayer BxN as High Capacity for Lithium-Ion Batteries: A First-Principles Study
    Zhou, Xingyi
    Chen, Xianfei
    Shu, Chaozhu
    Huang, Yi
    Xiao, Beibei
    Zhang, Wentao
    Wang, Lianli
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (34) : 41169 - 41181