Study of the first-order phase transition in the classical and quantum random field Heisenberg model on a simple cubic lattice

被引:9
|
作者
de Sousa, J. Ricardo [2 ,3 ]
de Albuquerque, Douglas F. [4 ]
de Arruda, Alberto S. [1 ]
机构
[1] Univ Fed Mato Grosso, Inst Fis, BR-78060900 Cuiaba, MT, Brazil
[2] Univ Fed Amazonas, Dept Fis, BR-69077000 Manaus, AM, Brazil
[3] Natl Inst Sci & Technol Complex Syst, BR-69077000 Manaus, AM, Brazil
[4] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
关键词
Random field; Heisenberg model; Effective-field theory; ISING THIN-FILM; TRICRITICAL BEHAVIOR; MAGNETIC-PROPERTIES; DIAGRAMS; TEMPERATURE; FERROMAGNET; METAMAGNET;
D O I
10.1016/j.physa.2012.01.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagram of the Heisenberg ferromagnetic model in the presence of a magnetic random field (we have used bimodal distribution) of spin S = 1/2 (quantum case) and S = infinity (classical case) on a simple cubic lattice is studied within the framework of the effective-field theory in finite cluster (we have chosen N = 2 spins). Integrating out the part of order parameter (equation of state), we obtained an effective Landau expansion for the free energy written in terms of the order parameter Psi (m). Using the Maxwell construction we have obtained the phase diagram in the T H plane for all intervals of the field. The first-order transition temperature is calculated by the discontinuity of the magnetization at T-c*(H), on the other hand in the continuous transition the magnetization is null at T = T-c(H). At null temperature (T = 0) we have found the coexistence field H-c = 3.23 J that is independent of spin value. The transition temperature T-c(H) for the classical case (S = infinity), in the T - H plane, is larger than the quantum case (S = 1/2). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3361 / 3365
页数:5
相关论文
共 18 条
  • [1] Phase diagram of the classical Heisenberg model in a trimodal random field distribution
    Santos-Filho, A.
    de Albuquerque, D. F.
    Santos-Filho, J. B.
    Araujo Batista, T. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 133 - 139
  • [2] Strongly first-order electroweak phase transition and classical scale invariance
    Farzinnia, Arsham
    Ren, Jing
    PHYSICAL REVIEW D, 2014, 90 (07):
  • [3] First-order phase transition in the quantum spin glass at T=0
    Viana, JR
    Nogueira, Y
    de Sousa, JR
    PHYSICS LETTERS A, 2003, 311 (06) : 480 - 484
  • [4] A New Universality at a First-Order Phase Transition: The Spin-flop Transition in an Anisotropic Heisenberg Antiferromagnet
    Xu, Jiahao
    Tsai, Shan-Ho
    Landau, David P.
    Binder, Kurt
    X BRAZILIAN MEETING ON SIMULATIONAL PHYSICS, 2020, 1483
  • [5] Change in the entropy during a first-order phase transition induced by a magnetic field in an isotropic non-Heisenberg ferromagnet
    Lavanov, G. Yu.
    Kalita, V. M.
    Loktev, V. M.
    LOW TEMPERATURE PHYSICS, 2018, 44 (04) : 322 - 327
  • [6] First-order transition of the spin-1 Blume-Capel model with random anisotropy using effective-field theory
    Bezerra, E. C.
    da Silva, M. Gomes
    de Sousa, J. Ricardo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 615
  • [7] Mean-field theory of first-order quantum superconductor-insulator transition
    Poboiko, Igor
    Feigel'man, Mikhail
    SCIPOST PHYSICS, 2024, 17 (02):
  • [8] Study of Phase Transitions in the Antiferromagnetic Heisenberg Model on a Body-Centered Cubic Lattice by Monte Carlo Simulation
    Murtazaev, A. K.
    Kassan-Ogly, F. A.
    Ramazanov, M. K.
    Murtazaev, K. Sh
    PHYSICS OF METALS AND METALLOGRAPHY, 2020, 121 (04) : 305 - 309
  • [9] Prediction of a first-order phase transition in two-dimensional ferromagnets in the presence of random fields
    Ibrahim, Essa M.
    Tang, Ping
    Zhang, Shufeng
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 564
  • [10] First-order phase transition for a field theory at finite chemical potential in a toroidal topology
    Linhares, C. A.
    Malbouisson, A. P. C.
    Roditi, I.
    EPL, 2012, 98 (04)