Genus-N algebraic reductions of the Benney hierarchy within a Schottky model

被引:4
作者
Crowdy, Darren [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 50期
关键词
D O I
10.1088/0305-4470/38/50/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By exploiting a new theoretical connection between reductions of the Benney hierarchy and the Dirichlet problem for Laplace's equation, the solution to a spectral problem associated with N-parameter algebraic reductions of the Benney hierarchy is found explicitly. The solutions can be written in terms of the modified Green's function associated with reflectionally symmetric, N-connected planar domains whose 'holes' are all centred on the symmetry axis. Explicit formulae for the modified Green's function in a canonical class of circular domains are constructed using a Schottky model of the Schottky double of these domains. Uniformizations of the spectral problem associated with two different types of reductions then follow from these formulae.
引用
收藏
页码:10917 / 10934
页数:18
相关论文
共 33 条
  • [1] [Anonymous], COMPLEX VARIABLES
  • [2] [Anonymous], INDRAS PEARLS
  • [3] Baker H.F., 1995, ABELIAN FUNCTIONS
  • [4] Higher genus hyperelliptic reductions of the Benney equations
    Baldwin, S
    Gibbons, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (20): : 5341 - 5354
  • [5] Hyperelliptic reduction of the Benney moment equations
    Baldwin, S
    Gibbons, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (31): : 8393 - 8417
  • [6] Beardon A. F., 1984, LONDON MATH SOC LECT, V78
  • [7] Belokolos ED., 1994, Springer series in nonlinear dynamics
  • [8] BENNEY DJ, 1973, STUD APPL MATH, V52, P45
  • [9] Burnside W., 1891, P LOND MATH SOC, V23, P49, DOI DOI 10.1112/PLMS/S1-23.1.49
  • [10] BURNSIDE W, 1892, P LOND MATH SOC, V23, P281, DOI DOI 10.1112/PLMS/S1-23.1.281