A general construction for nested Latin hypercube designs

被引:9
|
作者
Xu, Jin [1 ]
Duan, Xiaojun [1 ]
Wang, Zhengming [1 ]
Yan, Liang [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer experiments; Latin hypercube designs; Nested designs; Sampling property; COMPUTER EXPERIMENTS; HIGH-ACCURACY; POINT;
D O I
10.1016/j.spl.2017.10.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new construction for nested designs, called General Nested Latin Hypercube designs (GNLHs). Such designs contain nested Latin hypercube designs as special cases. Besides achieving maximum uniformity in one dimension, each layer of GNLHs is flexible in run sizes. Moreover, theoretical results and numerical simulations show that GNLHs perform well on the sampling variance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 140
页数:7
相关论文
共 50 条
  • [21] CONSTRUCTION OF ORTHOGONAL AND NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGNS FROM ORTHOGONAL DESIGNS
    Yang, Jinyu
    Liu, Min-Qian
    STATISTICA SINICA, 2012, 22 (01) : 433 - 442
  • [22] Orthogonal Latin Hypercube Designs for Three Columns
    Parui, Shyamsundar
    Mandal, B. N.
    Parsad, Rajender
    Dash, Sukanta
    UTILITAS MATHEMATICA, 2018, 108 : 149 - 158
  • [23] Construction of second-order orthogonal sliced Latin hypercube designs
    Cao, Rui-Yuan
    Liu, Min-Qian
    JOURNAL OF COMPLEXITY, 2015, 31 (05) : 762 - 772
  • [24] A CONSTRUCTION METHOD FOR ORTHOGONAL LATIN HYPERCUBE DESIGNS WITH PRIME POWER LEVELS
    Pang, Fang
    Liu, Min-Qian
    Lin, Dennis K. J.
    STATISTICA SINICA, 2009, 19 (04) : 1721 - 1728
  • [25] Uniform sliced Latin hypercube designs
    Chen, Hao
    Huang, Hengzhen
    Lin, Dennis K. J.
    Liu, Min-Qian
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2016, 32 (05) : 574 - 584
  • [26] Bounds for Maximin Latin Hypercube Designs
    van Dam, Edwin R.
    Rennen, Gijs
    Husslage, Bart
    OPERATIONS RESEARCH, 2009, 57 (03) : 595 - 608
  • [27] Optimal Sliced Latin Hypercube Designs
    Ba, Shan
    Myers, William R.
    Brenneman, William A.
    TECHNOMETRICS, 2015, 57 (04) : 479 - 487
  • [28] Sliced Orthogonal Array-Based Latin Hypercube Designs
    Hwang, Youngdeok
    Qian, Peter Z. G.
    He, Xu
    TECHNOMETRICS, 2016, 58 (01) : 50 - 61
  • [29] Orthogonal Latin hypercube designs with special reference to four factors
    Mandal, B. N.
    Dash, Sukanta
    Parui, Shyamsundar
    Parsad, Rajender
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 181 - 185
  • [30] CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS
    Chen, Jiajie
    Qian, Peter
    STATISTICA SINICA, 2018, 28 (02) : 839 - 851