Inverse problems and conformal mapping

被引:13
|
作者
Kress, Rainer [1 ]
机构
[1] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
关键词
inverse boundary value problems; Laplace equation; conformal mapping; numerical conforming mapping; iterative methods; NONLINEAR INTEGRAL-EQUATIONS; CONDUCTIVITY PROBLEM;
D O I
10.1080/17476933.2011.605446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this exposition we give a unified presentation of the conformal mapping technique that was developed over the last decade by Akduman et al. [I. Akduman and R. Kress, Electrostatic imaging via conformal mapping, Inverse Probl. 18 (2002), pp. 1659-1672; R. Kress, Inverse Dirichlet problem and conformal mapping, Math. Comput. Simul. 66 (2004), pp. 255-265; H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems, Inverse Probl. 21 (2005), pp. 935-953; H. Haddar and R. Kress, Conformal mapping and an inverse impedance boundary value problem, J. Inverse Ill-Posed Probl. 14 (2006), pp. 785-804; H. Haddar and R. Kress, Conformal mapping and impedance tomography, Inverse Probl. 26 (2010), p. 074002] for the inverse problem to recover three different types of inclusions in a homogeneous conducting background medium from Cauchy data on the accessible exterior boundary. The main ingredient of this method is a nonlinear and nonlocal ordinary differential equation for boundary values of a holomorphic function in an annulus bounded by two concentric circles that maps this annulus conformally onto the unknown domain. Furthermore, in a concluding section we illustrate how this differential equation also can be applied to numerically construct conformal mappings for doubly connected domains including numerical examples.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 50 条
  • [21] Conformal mapping for cavity inverse problem: an explicit reconstruction formula
    Munnier, Alexandre
    Ramdani, Karim
    APPLICABLE ANALYSIS, 2017, 96 (01) : 108 - 129
  • [22] Solving Inverse Problems by Space Mapping with Inverse Difference Method
    Simsek, Murat
    Sengor, N. Serap
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING SCEE 2008, 2010, 14 : 453 - 460
  • [23] SOME PROBLEMS RELATED TO ITERATIVE METHODS IN CONFORMAL MAPPING
    LIND, I
    ARKIV FOR MATEMATIK, 1967, 7 (02): : 101 - &
  • [24] Conformal Mapping and Bipolar Coordinate for Eccentric Laplace Problems
    Chen, Jeng-Tzong
    Tsai, Ming-Hong
    Liu, Chein-Shan
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2009, 17 (03) : 314 - 322
  • [25] SOLUTION OF EIGENVALUE PROBLEMS USING CONFORMAL MAPPING TECHNIQUES
    LAURA, PA
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1968, 44 (01): : 372 - &
  • [26] Numerical method of solving the direct and inverse problems of conformal mappings
    Aptekarev, AI
    Volevich, LR
    Kazandjan, ÉP
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2004, 11 (03) : 277 - 288
  • [27] Basis mapping methods for forward and inverse problems
    Schweiger, Martin
    Arridge, Simon
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (01) : 3 - 28
  • [28] Extension of inverse q-Fourier transform via conformal mapping
    Nakamura, Gilberto M.
    de Martini, Alexandre H.
    Martinez, Alexandre S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 524 : 106 - 111
  • [29] NUMERICAL CONFORMAL MAPPING FOR TREATMENT OF GEOMETRY PROBLEMS IN PROCESS SIMULATION
    SEIDL, A
    SVOBODA, M
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1985, 4 (04) : 404 - 407
  • [30] Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization
    Calixto, Wesley Pacheco
    Alvarenga, Bernardo
    da Mota, Jesus Carlos
    Brito, Leonardo da Cunha
    Wu, Marcel
    Alves, Aylton Jose
    Martins Neto, Luciano
    Lemos Antunes, Carlos F. R.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010