Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries

被引:42
|
作者
Li, Zhitong [1 ]
Liu, Guoxue [1 ]
Guo, Min [1 ]
Ding, Liang-Xin [1 ]
Wang, Suqing [1 ]
Wang, Haihui [1 ,2 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
vanadium pentoxide; electrospinning; lithium ion batteries; nanotubes; V2O5; INTERCALATION; NANOCOMPOSITE; NANOFIBERS; MORPHOLOGY; RIBBONS; SOL; XPS;
D O I
10.1016/j.electacta.2015.05.057
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, porous vanadium pentoxide (V2O5) nanotubes have been synthesized by a simple electrospinning technique followed by an annealing process with using low-cost inorganic vanadium precursor. By controlling the annealing time at 400 degrees C, a small amount of polymer pyrolysis carbon can be retained which improves the conductivity of the porous V2O5 nanotubes. When evaluated as a cathode material for lithium ion batteries, the porous V2O5 nanotubes delivered capacities of 114.9, 99.7 and 79.6 mAh g(-1) at 10, 20 and 50C in the voltage range of 2.5-4.0 V, respectively. Moreover, the porous V2O5 nanotubes display good cycling performance, the capacity retention is 97.4% after 200 cycles at 50C. The results indicate that fabricating nanostructured V2O5 with a porous interconnected morphology is an effective way to improve the electrochemical performance of V2O5. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [21] Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries
    Xiao, Shuning
    Pan, Donglai
    Wang, Liangjun
    Zhang, Zhengzhong
    Lyu, Zhiyang
    Dong, Wenhao
    Chen, Xiaolang
    Zhang, Dieqing
    Chen, Wei
    Li, Hexing
    NANOSCALE, 2016, 8 (46) : 19343 - 19351
  • [22] Mn-doped LiFePO4@C as a high-performance cathode material for lithium-ion batteries
    Chen, Wenjing
    Song, Fangxiang
    Yang, Yumei
    Chen, Qianlin
    PARTICUOLOGY, 2024, 90 : 418 - 428
  • [23] A carbon-LiFePO4 nanocomposite as high-performance cathode material for lithium-ion batteries
    Ren, Jianguo
    Pu, Weihua
    He, Xiangming
    Jiang, Changyin
    Wan, Chunrong
    IONICS, 2011, 17 (07) : 581 - 586
  • [24] Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries
    Wang, Hao-Ran
    Cai, Wen-Jun
    Yang, Yong-Gang
    Li, Yi
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (03)
  • [25] Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes
    Yan, Bo
    Li, Xifei
    Bai, Zhimin
    Li, Minsi
    Dong, Lei
    Xiong, Dongbin
    Li, Dejun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 634 : 50 - 57
  • [26] Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries
    Zhang, Hongwei
    Li, Jiayi
    Luo, Linqu
    Zhao, Jie
    He, Junyu
    Zhao, Xiaoxian
    Liu, Hao
    Qin, Yuanbin
    Wang, Fengyun
    Song, Jianjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 876
  • [27] Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries
    Wang, Xufeng
    Feng, Zhijun
    Huang, Juntong
    Deng, Wen
    Li, Xibao
    Zhang, Huasen
    Wen, Zhenhai
    CARBON, 2018, 127 : 149 - 157
  • [28] Synthesis of hierarchical α-Fe2O3 nanotubes for high-performance lithium-ion batteries
    Gu, Cuiping
    Song, Xinjie
    Zhang, Simin
    Ryu, Si Ok
    Huang, Jiarui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 714 : 6 - 12
  • [29] A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries
    Wu, Manman
    Zhao, Yang
    Sun, Binqiao
    Sun, Zhenhe
    Li, Chenxi
    Han, Yu
    Xu, Lingqun
    Ge, Zhen
    Ren, Yuxin
    Zhang, Mingtao
    Zhang, Qiang
    Lu, Yan
    Wang, Wei
    Ma, Yanfeng
    Chen, Yongsheng
    NANO ENERGY, 2020, 70
  • [30] Electrospun NiFe2O4@C fibers as high-performance anode for lithium-ion batteries
    Dong, Tao
    Wang, Gang
    Yang, Ping
    DIAMOND AND RELATED MATERIALS, 2017, 73 : 210 - 217