A large data existence result for the stationary Boltzmann equation in a cylindrical geometry

被引:7
作者
Arkeryd, L [1 ]
Nouri, A
机构
[1] Univ Gothenburg, Dept Math, SE-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
[3] Univ Aix Marseille 1, CMI, FR-13453 Marseille, France
来源
ARKIV FOR MATEMATIK | 2005年 / 43卷 / 01期
关键词
D O I
10.1007/BF02383609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An L-1-existence theorem is proved for the nonlinear stationary Boltzmann equation with hard forces and no small velocity truncation-only the Grad angular cut-off-in a setting between two coaxial rotating cylinders when the indata are given on the cylinders.
引用
收藏
页码:29 / 50
页数:22
相关论文
共 17 条
[1]  
Arkery L., 2000, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V9, P375, DOI 10.5802/afst.963
[2]   ON THE CONVERGENCE OF SOLUTIONS OF THE ENSKOG EQUATION TO SOLUTIONS OF THE BOLTZMANN-EQUATION [J].
ARKERYD, L ;
CERCIGNANI, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (8-9) :1071-1089
[3]   On the stationary Povzner equation in Rn [J].
Arkeryd, L ;
Nouri, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (01) :115-153
[4]   On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model [J].
Arkeryd, L ;
Nouri, A .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (3-4) :993-1019
[5]  
ARKERYD L, 1998, ANN SCUOLA NORM SUP, V27, P533
[6]  
ARKERYD L, IN PRESS J STAT PHYS
[7]  
Arkeryd L, 2002, ANN SCUOLA NORM-SCI, V1, P359
[8]  
Cercignani C., 1994, MATH THEORY DILUTE G, V106
[9]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[10]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125