Highly accurate sequence imputation enables precise QTL mapping in Brown Swiss cattle

被引:16
作者
Frischknecht, Mirjam [1 ,2 ]
Pausch, Hubert [3 ,4 ,5 ]
Bapst, Beat [1 ]
Signer-Hasler, Heidi [2 ]
Flury, Christine [2 ]
Garrick, Dorian [6 ]
Stricker, Christian [7 ]
Fries, Ruedi [3 ]
Gredler-Grandl, Birgit [1 ]
机构
[1] Qualitas AG, Chamerstr 56a, CH-6300 Zug, Switzerland
[2] Bern Univ Appl Sci, Sch Agr Forest & Food Sci HAFL, Langgasse 85, CH-3052 Zollikofen, Switzerland
[3] Tech Univ Munich, Chair Anim Breeding, Liesel Beckmann Str 1, D-85354 Freising Weihenstephan, Germany
[4] Ctr AgriBiosci, AgriBio, Agr Victoria, Bundoora, Vic 3083, Australia
[5] Swiss Fed Inst Technol, Tannenstr 1, CH-8092 Zurich, Switzerland
[6] Massey Univ, Inst Vet Anim & Biomed Sci, Palmerston North 4442, New Zealand
[7] Agn Genet GmbH, 8b Bortjistr, CH-7260 Davos, Switzerland
来源
BMC GENOMICS | 2017年 / 18卷
关键词
Whole genome sequencing; Imputation; Accuracy; Genome-wide association study; QTL discovery; Milk traits; Brown Swiss; Dairy cattle; QUANTITATIVE TRAIT LOCUS; GENOME-WIDE ASSOCIATION; GENOTYPE IMPUTATION; COMPLEX TRAITS; MILK-YIELD; PREDICTION; DGAT1; FAT; IDENTIFICATION; POLYMORPHISM;
D O I
10.1186/s12864-017-4390-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Within the last few years a large amount of genomic information has become available in cattle. Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In order to combine genomic information from different sources and infer genotypes for a common set of variants, genotype imputation is required. Results: In this study we evaluated the accuracy of imputation from high density chips to whole genome sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, Flmpute, Impute2, Minimac) and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high and differences between the programs and scenarios were small. We imputed sequence variant genotypes for more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content, respectively. Known causal variants that were imputed from the sequenced reference panel were among the most significantly associated variants of the genome-wide association study. Conclusions: Our study demonstrates that whole-genome sequence information can be imputed at high accuracy in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate causal variant detection.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Evaluation of variant identification methods for whole genome sequencing data in dairy cattle [J].
Baes, Christine F. ;
Dolezal, Marlies A. ;
Koltes, James E. ;
Bapst, Beat ;
Fritz-Waters, Eric ;
Jansen, Sandra ;
Flury, Christine ;
Signer-Hasler, Heidi ;
Stricker, Christian ;
Fernando, Rohan ;
Fries, Ruedi ;
Moll, Juerg ;
Garrick, Dorian J. ;
Reecy, James M. ;
Gredler, Birgit .
BMC GENOMICS, 2014, 15
[2]   ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation [J].
Bionaz, Massimo ;
Loor, Juan J. .
JOURNAL OF NUTRITION, 2008, 138 (06) :1019-1024
[3]  
Blott S, 2003, GENETICS, V163, P253
[4]   Consequences of splitting whole-genome sequencing effort over multiple breeds on imputation accuracy [J].
Bouwman, Aniek C. ;
Veerkamp, Roel F. .
BMC GENETICS, 2014, 15
[5]   Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle [J].
Brondum, Rasmus Froberg ;
Guldbrandtsen, Bernt ;
Sahana, Goutam ;
Lund, Mogens Sando ;
Su, Guosheng .
BMC GENOMICS, 2014, 15
[6]   A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals [J].
Browning, Brian L. ;
Browning, Sharon R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (02) :210-223
[7]   Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications [J].
Calus, M. P. L. ;
Bouwman, A. C. ;
Hickey, J. M. ;
Veerkamp, R. F. ;
Mulder, H. A. .
ANIMAL, 2014, 8 (11) :1743-1753
[8]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[9]   The utility of low-density genotyping for imputation in the Thoroughbred horse [J].
Corbin, Laura J. ;
Kranis, Andreas ;
Blott, Sarah C. ;
Swinburne, June E. ;
Vaudin, Mark ;
Bishop, Stephen C. ;
Woolliams, John A. .
GENETICS SELECTION EVOLUTION, 2014, 46
[10]   Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle [J].
Daetwyler, Hans D. ;
Capitan, Aurelien ;
Pausch, Hubert ;
Stothard, Paul ;
Van Binsbergen, Rianne ;
Brondum, Rasmus F. ;
Liao, Xiaoping ;
Djari, Anis ;
Rodriguez, Sabrina C. ;
Grohs, Cecile ;
Esquerre, Diane ;
Bouchez, Olivier ;
Rossignol, Marie-Noelle ;
Klopp, Christophe ;
Rocha, Dominique ;
Fritz, Sebastien ;
Eggen, Andre ;
Bowman, Phil J. ;
Coote, David ;
Chamberlain, Amanda J. ;
Anderson, Charlotte ;
VanTassell, Curt P. ;
Hulsegge, Ina ;
Goddard, Mike E. ;
Guldbrandtsen, Bernt ;
Lund, Mogens S. ;
Veerkamp, Roel F. ;
Boichard, Didier A. ;
Fries, Ruedi ;
Hayes, Ben J. .
NATURE GENETICS, 2014, 46 (08) :858-865