Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses

被引:10
作者
Anguraj, Annamalai [1 ]
Kanjanadevi, Subramaniam [1 ]
Jose Nieto, Juan [2 ,3 ]
机构
[1] PSG Coll Arts & Sci, Dept Math, Coimbatore 641014, Tamil Nadu, India
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Univ Santiago de Compostela, Dept Math Anal, Fac Math, Santiago De Compostela 15782, Spain
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2017年 / 22卷 / 06期
关键词
fractional derivative; fractional impulsive conditions; (a; k)-regularized resolvent operator; Riemann-Liouville operator; INITIAL-VALUE PROBLEMS; EVOLUTION-EQUATIONS; EXISTENCE; DERIVATIVES;
D O I
10.15388/NA.2017.6.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Riemann-Liouville fractional differential equations with fractional-order derivative in the impulsive conditions. We study the existence of the mild solution by applying the Laplace transform method and (a, k)-regularized resolvent operator. We use the contraction mapping principle and fixed point theorem for condensing map to prove our existence results.
引用
收藏
页码:753 / 764
页数:12
相关论文
共 23 条
[1]   Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions [J].
Anguraj, A. ;
Karthikeyan, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) :2717-2721
[2]  
[Anonymous], 1987, NONLINEAR OPERATORS
[3]  
Chalishajar D. N, 2015, DYNAM CONT DIS SER A, V22, P25
[4]   Response to "Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401-3.]" [J].
Feckan, Michal ;
Zhou, Yong ;
Wang, JinRong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (12) :4213-4215
[5]   On the concept and existence of solution for impulsive fractional differential equations [J].
Feckan, Michal ;
Zhou, Yong ;
Wang, JinRong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) :3050-3060
[6]   Continuity of solutions to discrete fractional initial value problems [J].
Goodrich, Christopher S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) :3489-3499
[7]   Impulsive fractional partial differential equations [J].
Guo, Tian Liang ;
Zhang, KanJian .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :581-590
[8]   Asymptotics for fractional nonlinear heat equations [J].
Hayashi, N ;
Kaikina, EI ;
Naumkin, PI .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :663-688
[9]   On recent developments in the theory of abstract differential equations with fractional derivatives [J].
Hernandez, Eduardo ;
O'Regan, Donal ;
Balachandran, Krishnan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3462-3471
[10]   Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives [J].
Heymans, Nicole ;
Podlubny, Igor .
RHEOLOGICA ACTA, 2006, 45 (05) :765-771