OPTIMAL L1-TYPE RELAXATION RATES FOR THE CAHN-HILLIARD EQUATION ON THE LINE

被引:4
作者
Otto, Felix [1 ]
Scholtes, Sebastian [2 ]
Westdickenberg, Maria G. [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Rhein Westfal TH Aachen, Templergraben 55, D-52062 Aachen, Germany
关键词
energy-energy-dissipation; nonlinear PDE; gradient flow; relaxation rates; STABILITY; FRONTS;
D O I
10.1137/18M1192640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive optimal algebraic-in-time relaxation rates to the kink for the Cahn-Hilliard equation on the line. We assume that the initial data have a finite distance in terms of either a first moment or the excess mass-to a kink profile and capture the decay rate of the energy and the perturbation. Our tools include Nash-type inequalities, duality arguments, and Schauder estimates.
引用
收藏
页码:4645 / 4682
页数:38
相关论文
共 15 条