ICRF heating scenarios for the IGNITOR machine

被引:4
|
作者
Riccitelli, M
Vecchi, G
Maggiora, R
Phillips, CK
Majeski, RP
Wilson, JR
Smithe, DN
机构
[1] Politecn Torino, Dipartimento Elettron, I-10129 Turin, Italy
[2] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Mission Res Co, Newington, VA USA
关键词
IGNITOR; ICRF; heating scenarios; minority heating; first harmonic heating;
D O I
10.1016/S0920-3796(98)00424-4
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A large frequency range ICRF antenna (70 < f < 140 MHz) is proposed for the IGNITOR machine, in order to allow either hydrogen or helium-3 minority heating for all the planned operating scenarios. Results from a feasibility study for such a heating system are presented. The power absorbed by the different plasma species as a function of plasma parameters for different heating scenarios was calculated using both 1-dimensional and 2-dimensional kinetic wave codes. Different alternatives are proposed in order to improve heating performances while accounting for the effects of collisional redistribution of the absorbed power. Wave absorption is predicted to be very strong for a number of different RF scenarios. Single pass absorption by alpha particles, as given by a 1-dimensional integral kinetic wave code, is also discussed. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 43 条
  • [1] Influence of the antenna toroidal spectrum on ICRF heating scenarios in ITER
    Dumont, R. J.
    RADIO FREQUENCY POWER IN PLASMAS, 2009, 1187 : 97 - 100
  • [2] Engineering evolution of the ignitor machine
    Celentano, G
    Capriccioli, A
    Cucchiaro, A
    Gasparotto, M
    Bianchi, A
    Ferrari, G
    Parodi, B
    Sanguinetti, GP
    Vivaldi, F
    Orlandi, S
    Coppi, B
    FUSION ENGINEERING AND DESIGN, 2001, 58-59 : 815 - 820
  • [3] Results of ICRF Heating Experiments from the EAST 2010 Campaign
    何钟鑫
    张新军
    赵燕平
    Plasma Science and Technology, 2015, (03) : 188 - 190
  • [4] Results of ICRF Heating Experiments from the EAST 2010 Campaign
    He Zhongxin
    Zhang Xinjun
    Zhao Yanping
    PLASMA SCIENCE & TECHNOLOGY, 2015, 17 (03) : 188 - 190
  • [5] Real-time capable modeling of ICRF heating on NSTX and WEST via machine learning approaches
    Sanchez-Villar, A.
    Bai, Z.
    Bertelli, N.
    Bethel, E. W.
    Hillairet, J.
    Perciano, T.
    Shiraiwa, S.
    Wallace, G. M.
    Wright, J. C.
    NUCLEAR FUSION, 2024, 64 (09)
  • [6] DISTRIBUTED CONTROL SYSTEM FOR KSTAR ICRF HEATING
    Wang, Sonjong
    Kwak, Jong-Gu
    Bae, Young-Dug
    Kim, Sung Kyu
    Hwang, Churl Kew
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2009, 41 (06) : 807 - 812
  • [7] ICRF heating for Wendelstein 7-X
    Wesner, F
    Hartmann, DA
    Birus, D
    Braun, F
    Wendorf, J
    FUSION ENGINEERING AND DESIGN, 2003, 66-68 : 561 - 566
  • [8] Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas
    Li Xiaoling
    Wan Baonian
    Guo Zhirong
    Zhong Guoqiang
    Hu Liqun
    Lin Shiyao
    Zhang Xinjun
    Ding Siye
    Lu Bo
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (05) : 411 - 416
  • [9] Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas
    李晓玲
    万宝年
    郭智荣
    钟国强
    胡立群
    林士耀
    张新军
    丁斯晔
    吕波
    Plasma Science and Technology, 2013, 15 (05) : 411 - 416
  • [10] Second harmonic ICRF heating experiments in Tore Supra
    Dumont, R. J.
    Basiuk, V.
    Eriksson, L. -G.
    RADIO FREQUENCY POWER IN PLASMAS, 2009, 1187 : 85 - +