Fully Adaptive Recurrent Neuro-Fuzzy Control for Power System Stability Enhancement in Multi Machine System

被引:8
|
作者
Saleem, Bushra [1 ]
Badar, Rabiah [2 ]
Manzoor, Awais [3 ]
Judge, Malik Ali [3 ]
Boudjadar, Jalil [4 ]
Ul Islam, Saif [5 ]
机构
[1] AJK Univ, Dept Elect Engn, Muzaffarabad 13100, Pakistan
[2] COMSATS Univ Islamabad, Dept Elect & Comp Engn, Islamabad 44550, Pakistan
[3] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad 44550, Pakistan
[4] Aarhus Univ, Dept Elect & Comp Engn, DK-8000 Aarhus, Denmark
[5] Inst Space Technol, Dept Comp Sci, Islamabad 44000, Pakistan
关键词
Power system stability; Stability analysis; Oscillators; Transient analysis; Rotors; Circuit stability; Control systems; low-frequency oscillations; neurofuzzy controller; FACTS controllers; adaptive controllers; optimization; TRANSIENT STABILITY; FACTS CONTROLLERS; HIGH PENETRATION; CLASSIFICATION; IMPLEMENTATION; ALGORITHM; GENERATOR; NETWORKS; DESIGN;
D O I
10.1109/ACCESS.2022.3164455
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Voltage instability in a power system produces low-frequency oscillations (LFOs), causing adverse effects in power distribution. Intelligent control schemes can overcome the limitations of fixed-parameter structures in power system stabilizers (PSS). Flexible alternating current transmission system (FACTS) control along with some supplementary control have remarkable potential in damping the oscillations. This paper proposes an adaptive neurofuzzy based recurrent wavelet control (ANRWC) scheme to enhance the power system stability. The proposed scheme utilizes recurrent Gaussian as antecedent part's membership function and recurrent wavelet function in consequent parts. Our scheme uses gradient descent, adadelta, adaptive moment estimation (ADAM) and proximal gradient descent algorithms for optimization in which parameters of the scheme are updated using a back-propagation algorithm. A multi-machine power system is used for testing the controller. We evaluate the proposed control scheme in comparison to conventional lead-lag control and an adaptive neurofuzzy takagi sugeno kang (ANFTSK) control scheme. For comparison, we calculate the performance indices (PIs) for different controllers. Both quantitative and qualitative evaluations assert the effectiveness of the proposed control as compared to other schemes.
引用
收藏
页码:36464 / 36476
页数:13
相关论文
共 50 条
  • [21] Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization
    Adewuyi, Oludamilare Bode
    Folly, Komla A.
    Oyedokun, David T. O.
    Ogunwole, Emmanuel Idowu
    SUSTAINABILITY, 2022, 14 (22)
  • [22] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [23] Adaptive neuro-fuzzy inference system-based energy conservation system for performance enhancement of MANET
    Jegatheesan, A.
    Kumar, N. Sathish
    Palagan, C. Anna
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (08)
  • [24] On the Synergism of Evolutionary Neuro-Fuzzy System
    Srivastava, Vivek
    Tripathi, Bipin K.
    Pathak, Vinay K.
    Tiwari, Anand
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4827 - 4834
  • [25] Face Recognition System using Adaptive Neuro-Fuzzy Inference System
    Chandrasekhar, Tadi
    Kumar, Ch. Sumanth
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 448 - 455
  • [26] A robust power system stabilizer for enhancement of stability in power system using adaptive fuzzy sliding mode control
    Ray, Prakash K.
    Paital, Shiba R.
    Mohanty, Asit
    Eddy, Foo Y. S.
    Gooi, Hoay Beng
    APPLIED SOFT COMPUTING, 2018, 73 : 471 - 481
  • [27] Decentralized adaptive neuro-fuzzy dynamic surface control for maximum power point tracking of a photovoltaic system
    Zirkohi, Majid Moradi
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (15): : 8044 - 8083
  • [28] Diagnosing Breast Cancer Based on the Adaptive Neuro-Fuzzy Inference System
    Chidambaram, S.
    Ganesh, S. Sankar
    Karthick, Alagar
    Jayagopal, Prabhu
    Balachander, Bhuvaneswari
    Manoharan, S.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [29] Control of a MIMO Coupled Plant Using a Neuro-Fuzzy Adaptive System Based on Boolean Relations
    Espitia, Helbert
    Machon, Ivan
    Lopez, Hilario
    IEEE ACCESS, 2021, 9 : 59987 - 60009
  • [30] Global Image Thresholding Adaptive Neuro-Fuzzy Inference System Trained with Fuzzy Inclusion and Entropy Measures
    Bogiatzis, Athanasios
    Papadopoulos, Basil
    SYMMETRY-BASEL, 2019, 11 (02):