SOBOLEV-TYPE FUNCTIONS ON NONHOMOGENEOUS METRIC SPACES

被引:0
|
作者
Romanov, A. S. [1 ,2 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
关键词
metric; measure; embedding theorems;
D O I
10.33048/semi.2020.17.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider analogs of classical embedding theorems for function classes of Sobolev type on nonhomogeneous metric measure spaces.
引用
收藏
页码:690 / 699
页数:10
相关论文
共 50 条
  • [21] THE EQUIVALENCE OF CONE METRIC SPACES AND METRIC SPACES
    Feng, Yuqiang
    Mao, Wei
    FIXED POINT THEORY, 2010, 11 (02): : 259 - 263
  • [22] Moser-type trace inequalities for generalized Lorentz–Sobolev spaces
    Robert Černý
    Revista Matemática Complutense, 2015, 28 : 303 - 357
  • [23] MOSER-TYPE INEQUALITIES FOR GENERALIZED LORENTZ-SOBOLEV SPACES
    Cerny, Robert
    Gurka, Petr
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (04): : 1225 - 1269
  • [24] Sobolev spaces on compact groups
    Kumar, Manoj
    Kumar, N. Shravan
    FORUM MATHEMATICUM, 2023, 35 (04) : 901 - 911
  • [25] Moser-type trace inequalities for generalized Lorentz-Sobolev spaces
    Cerny, Robert
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02): : 303 - 357
  • [26] On metric orbit spaces and metric dimension
    Heydarpour, Majid
    TOPOLOGY AND ITS APPLICATIONS, 2016, 214 : 94 - 99
  • [27] Characterizations of Sobolev spaces in Euclidean spaces and Heisenberg groups
    Cui Xiao-yue
    Lam Nguyen
    Lu Guo-zhen
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 531 - 547
  • [28] Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups
    Busovikov, V. M.
    Sakbaev, V. Zh.
    IZVESTIYA MATHEMATICS, 2020, 84 (04) : 694 - 721
  • [29] On Metric-Type Spaces Based on Extended T-Conorms
    Oner, Tarkan
    Sostak, Alexander
    MATHEMATICS, 2020, 8 (07)
  • [30] Metric Affine Spaces
    Panzhensky V.I.
    Stepanov S.E.
    Sorokina M.V.
    Journal of Mathematical Sciences, 2020, 245 (5) : 644 - 658