Effects of Population Initialization on Differential Evolution for Large Scale Optimization

被引:0
作者
Kazimipour, Borhan [1 ]
Li, Xiaodong [1 ]
Qin, A. K. [1 ,2 ]
机构
[1] RMIT Univ, Sch Comp Sci & Informat Technol, Melbourne, Vic 3000, Australia
[2] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
来源
2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2014年
关键词
INTELLIGENCE; OPPOSITION; PARAMETERS; SEQUENCES; ALGORITHM; TESTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work provides an in-depth investigation of the effects of population initialization on Differential Evolution (DE) for dealing with large scale optimization problems. Firstly, we conduct a statistical parameter sensitive analysis to study the effects of DE's control parameters on its performance of solving large scale problems. This study reveals the optimal parameter configurations which can lead to the statistically superior performance over the CEC-2013 large-scale test problems. Thus identified optimal parameter configurations interestingly favour much larger population sizes while agreeing with the other parameter settings compared to the most commonly employed parameter configuration. Based on one of the identified optimal configurations and the most commonly used configuration, which only differ in the population size, we investigate the influence of various population initialization techniques on DE's performance. This study indicates that initialization plays a more crucial role in DE with a smaller population size. However, this observation might be the result of insufficient convergence due to the use of a large population size under the limited computational budget, which deserve more investigations.
引用
收藏
页码:2404 / 2411
页数:8
相关论文
共 50 条
  • [41] Differential evolution optimization of Rutherford backscattering spectra
    Heller, Rene
    Klingner, Nico
    Claessens, Niels
    Merckling, Clement
    Meersschaut, Johan
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (16)
  • [42] Differential evolution framework for big data optimization
    Elsayed, Saber
    Sarker, Ruhul
    MEMETIC COMPUTING, 2016, 8 (01) : 17 - 33
  • [43] A novel mutation differential evolution for global optimization
    Yu, Xiaobing
    Cai, Mei
    Cao, Jie
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (03) : 1047 - 1060
  • [44] Surrogate-assisted Parameter Re-initialization for Differential Evolution
    Ji, Jing-Yu
    Wong, Man Leung
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1592 - 1599
  • [45] Improved Constructive Cooperative Coevolutionary Differential Evolution for Large-Scale Optimisation
    Glorieux, Emile
    Svensson, Bo
    Danielsson, Fredrik
    Lennartson, Bengt
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 1703 - 1710
  • [46] A Novel Adaptive FCM with Cooperative Multi-Population Differential Evolution Optimization
    Banerjee, Amit
    Abu-Mahfouz, Issam
    ALGORITHMS, 2022, 15 (10)
  • [47] Tensor decomposition-based alternate sub-population evolution for large-scale many-objective optimization
    Wang, Qingzhu
    Zhang, Lingling
    Wei, Shuang
    Li, Bin
    INFORMATION SCIENCES, 2021, 569 : 376 - 399
  • [48] DyOS - A Framework for Optimization of Large-Scale Differential Algebraic Equation Systems
    Caspari, A.
    Bremen, A. M.
    Faust, J. M. M.
    Jung, F.
    Kappatou, C. D.
    Sass, S.
    Vaupel, Y.
    Hannemann-Tamas, K.
    Mhamdi, A.
    Mitsos, A.
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 619 - 624
  • [49] Population Based Optimization via Differential Evolution and Adaptive Fractional Gradient Descent
    Liu, Zijian
    Luo, Chunbo
    Ren, Peng
    Wang, Tingwei
    Min, Geyong
    FILOMAT, 2020, 34 (15) : 5173 - 5185
  • [50] Differential Evolution with an Unbounded Population
    Kitamura, Tomofumi
    Fukunaga, Alex
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,