Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control

被引:25
作者
Liao, Peizhi [1 ]
Li, Yiguo [1 ]
Wu, Xiao [1 ]
Wang, Meihong [2 ]
Oko, Eni [2 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
[2] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, S Yorkshire, England
基金
中国国家自然科学基金;
关键词
Post-combustion carbon capture; Coal-fired power plant; Dynamic modelling; Dynamic simulation; Neural network inverse control; MODEL-PREDICTIVE CONTROL; CARBON CAPTURE; CONTROL STRATEGIES; DYNAMIC-MODEL; ABSORPTION; DESIGN; MEA; OPTIMIZATION; SIMULATION;
D O I
10.1016/j.ijggc.2020.102985
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Post-combustion carbon capture (PCC) with chemical absorption has strong interactions with coal-fired power plant (CFPP). It is necessary to investigate dynamic characteristics of the integrated CFPP-PCC system to gain knowledge for flexible operation. It has been demonstrated that the integrated system exhibits large time inertial and this will incur additional challenge for controller design. Conventional PID controller cannot effectively control CFPP-PCC process. To overcome these barriers, this paper presents an improved neural network inverse control (NNIC) which can quickly operate the integrated system and handle with large time constant. Neural network (NN) is used to approximate inverse dynamic relationships of integrated CFPP-PCC system. The NN inverse model uses setpoints as model inputs and gets predictions of manipulated variables. The predicted manipulated variables are then introduced as feed-forward signals. In order to eliminate steady-state bias and to operate the integrated CFPP-PCC under different working conditions, improvements have been achieved with the addition of PID compensator. The improved NNIC is evaluated in a large-scale supercritical CFPP-PCC plant which is implemented in gCCS toolkit. Case studies are carried out considering variations in power setpoint and capture level setpoint. Simulation results reveal that proposed NNIC can track setpoints quickly and exhibit satisfactory control performances.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Performance analysis for post-combustion CO2 capture in coal-fired power plants by integration with solar energy
    Wu, Ying
    Dai, Ying
    Xie, Weiyi
    Chen, Haijun
    Zhu, Yuezhao
    ENERGY, 2022, 261
  • [42] China baseline coal-fired power plant with post-combustion CO2 capture: 2. Techno-economics
    Singh, Surinder
    Lu, Haoren
    Cui, Qian
    Li, Chufu
    Zhao, Xinglei
    Xu, Wenqiang
    Ku, Anthony Y.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 78 : 429 - 436
  • [43] Evaluation of cooling requirements of post-combustion CO2 capture applied to coal-fired power plants
    Brandl, Patrick
    Soltani, Salman Masoudi
    Fennell, Paul S.
    Mac Dowell, Niall
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 122 : 1 - 10
  • [44] Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants
    Oexmann, Jochen
    Kather, Alfons
    Linnenberg, Sebastian
    Liebenthal, Ulrich
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2012, 2 (02): : 80 - 98
  • [45] Study on the Economic Operation of a 1000 MWe Coal-Fired Power Plant with CO2 Capture
    Yang, Jinning
    Wang, Chaowei
    Xu, Dong
    Yu, Xuehai
    Yang, Yang
    Wang, Zhiyong
    Wu, Xiao
    ENERGIES, 2024, 17 (19)
  • [46] Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants
    Jianlin Li
    Ti Wang
    Pei Liu
    Zheng Li
    Frontiers of Chemical Science and Engineering, 2022, 16 : 198 - 209
  • [47] Highly integrated post-combustion carbon capture process in a coal-fired power plant with solar repowering
    Sharma, Manish
    Parvareh, Forough
    Abbas, Ali
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (12) : 1623 - 1635
  • [48] Dynamic Simulation and Control of Post-combustion CO2 Capture with MEA in a Gas Fired Power Plant
    Mechleri, Evgenia D.
    Biliyok, Chechet
    Thornhill, Nina F.
    24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 : 619 - 624
  • [49] Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process
    Qadir, Abdul
    Sharma, Manish
    Parvareh, Forough
    Khalilpour, Rajab
    Abbas, Ali
    ENERGY CONVERSION AND MANAGEMENT, 2015, 97 : 7 - 19
  • [50] Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process
    Akinola, Toluleke E.
    Oko, Eni
    Wu, Xiao
    Ma, Keming
    Wang, Meihong
    ENERGY, 2020, 213