Nucleus Segmentation in Histology Images with Hierarchical Multilevel Thresholding

被引:40
作者
Phoulady, Hady Ahmady [1 ]
Goldgof, Dmitry B. [1 ]
Hall, Lawrence O. [1 ]
Mouton, Peter R. [2 ]
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[2] Univ S Florida, Dept Pathol & Cell Biol, Tampa, FL USA
来源
MEDICAL IMAGING 2016: DIGITAL PATHOLOGY | 2016年 / 9791卷
关键词
nucleus segmentation; histology; multilevel thresholding; color deconvolution; morphological operations;
D O I
10.1117/12.2216632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Automatic segmentation of histological images is an important step for increasing throughput while maintaining high accuracy, avoiding variation from subjective bias, and reducing the costs for diagnosing human illnesses such as cancer and Alzheimer's disease. In this paper, we present a novel method for unsupervised segmentation of cell nuclei in stained histology tissue. Following an initial preprocessing step involving color deconvolution and image reconstruction, the segmentation step consists of multilevel thresholding and a series of morphological operations. The only parameter required for the method is the minimum region size, which is set according to the resolution of the image. Hence, the proposed method requires no training sets or parameter learning. Because the algorithm requires no assumptions or a priori information with regard to cell morphology, the automatic approach is generalizable across a wide range of tissues. Evaluation across a dataset consisting of diverse tissues, including breast, liver, gastric mucosa and bone marrow, shows superior performance over four other recent methods on the same dataset in terms of F-measure with precision and recall of 0.929 and 0.886, respectively.
引用
收藏
页数:6
相关论文
共 10 条
[1]  
Al-Kofahi Y., 2010, BIOMEDICAL ENG IEEE, V57, P841
[2]  
Fatakdawala H., 2010, BIOMEDICAL ENG IEEE, V57, P1676
[3]   Effective segmentation and classification for HCC biopsy images [J].
Huang, Po-Whei ;
Lai, Yan-Hao .
PATTERN RECOGNITION, 2010, 43 (04) :1550-1563
[4]   A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution [J].
Khan, Adnan Mujahid ;
Rajpoot, Nasir ;
Treanor, Darren ;
Magee, Derek .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (06) :1729-1738
[5]  
Liao PS, 2001, J INF SCI ENG, V17, P713
[6]   Automated Histology Analysis [Opportunities for signal processing] [J].
McCann, Michael T. ;
Ozolek, John A. ;
Castro, Carlos A. ;
Parvin, Bahram ;
Kovacevic, Jelena .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (01) :78-87
[7]   THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS [J].
OTSU, N .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1979, 9 (01) :62-66
[8]  
Ruifrok AC, 2001, ANAL QUANT CYTOL, V23, P291
[9]   Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images [J].
Veta, Mitko ;
van Diest, Paul J. ;
Kornegoor, Robert ;
Huisman, Andre ;
Viergever, Max A. ;
Pluim, Josien P. W. .
PLOS ONE, 2013, 8 (07)
[10]   Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A Minimum-Model Approach [J].
Wienert, Stephan ;
Heim, Daniel ;
Saeger, Kai ;
Stenzinger, Albrecht ;
Beil, Michael ;
Hufnagl, Peter ;
Dietel, Manfred ;
Denkert, Carsten ;
Klauschen, Frederick .
SCIENTIFIC REPORTS, 2012, 2