On efficient estimation in additive hazards regression with current status data

被引:3
|
作者
Lu, Xuewen [1 ]
Song, Peter X. -K. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Additive hazards model; Interval censoring; One-step estimator; Semiparametric efficiency; LINEAR TRANSFORMATION MODELS; LIKELIHOOD-ESTIMATION;
D O I
10.1016/j.csda.2011.12.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The additive hazard regression (AHR) model is known for its convenience in interpretation, as hazard is modeled as a linear function of covariates. One outstanding issue in the application of such a model in the analysis of current status data is that there lacks an efficient and computationally simple approach for parameter estimation. In the current literature, Lin et al.'s (1998) method enjoys the computational ease but it is not semi-parametrically efficient, whereas Martinussen and Scheike's (2002) method is semi-parametrically efficient but difficult to compute. In this paper, we propose a new estimation approach in the context of Lin et al.'s AHR models where the monitor time process follows a proportional hazard model. We show that not only the proposed estimator achieves semi-parametric information bound, but also its implementation can be done easily using existing statistical software. We evaluate this new method via simulation studies. Also, we illustrate the proposed method through an analysis of renal function recovery data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2051 / 2058
页数:8
相关论文
共 50 条
  • [41] Nonparametric tests for stratified additive hazards model based on current status data
    Fan, Xiaodong
    Zhao, Shi-shun
    Zhang, Qingchun
    Su, Jianguo
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (12) : 2178 - 2191
  • [42] EMPIRICAL ANALYSIS OF CURRENT STATUS DATA FOR ADDITIVE HAZARDS MODEL WITH AUXILIARY COVARIATES
    Zhang, Jianling
    Yang, Mei
    Zhou, Xiuqing
    KYBERNETIKA, 2021, 57 (05) : 801 - 818
  • [43] Additive hazards regression and partial likelihood estimation for ecological monitoring data across space
    Lin, Feng-Chang
    Zhu, Jun
    STATISTICS AND ITS INTERFACE, 2012, 5 (02) : 195 - 206
  • [44] Bayesian adaptive lasso for additive hazard regression with current status data
    Wang, Chunjie
    Li, Qun
    Song, Xinyuan
    Dong, Xiaogang
    STATISTICS IN MEDICINE, 2019, 38 (20) : 3703 - 3718
  • [45] Regression analysis of bivariate current status data under the proportional hazards model
    Hu, Tao
    Zhou, Qingning
    Sun, Jianguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 410 - 424
  • [46] Efficient estimation of longitudinal data additive varying coefficient regression models
    Liu, Shu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 529 - 550
  • [47] Efficient Estimation of Longitudinal Data Additive Varying Coefficient Regression Models
    Shu LIU
    ActaMathematicaeApplicataeSinica, 2017, 33 (02) : 529 - 550
  • [48] Efficient estimation of longitudinal data additive varying coefficient regression models
    Shu Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 529 - 550
  • [49] Auxiliary covariate in additive hazards regression for survival data
    Shi, Xiaoping
    Liu, Yanyan
    Wu, Yuanshan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (01) : 101 - 113
  • [50] Efficient estimation for semiparametric varying- coefficient partially linear regression models with current status data
    Tao Hu
    Heng-jian Cui
    Xing-wei Tong
    Acta Mathematicae Applicatae Sinica, English Series, 2009, 25 : 195 - 204