Directional Support Vector Machines

被引:4
|
作者
Pernes, Diogo [1 ,2 ]
Fernande, Kelwin [1 ,2 ,3 ]
Cardoso, Jaime S. [1 ,2 ]
机构
[1] INESC TEC, P-4200 Porto, Portugal
[2] Univ Porto, P-4200 Porto, Portugal
[3] NILG AI, P-4200 Porto, Portugal
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 04期
关键词
directional statistics; supervised classification; support vector machines; DISTRIBUTIONS; MIXTURES;
D O I
10.3390/app9040725
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several phenomena are represented by directional-angular or periodic-data; from time references on the calendar to geographical coordinates. These values are usually represented as real values restricted to a given range (e.g., [0, 2 pi)), hiding the real nature of this information. In order to handle these variables properly in supervised classification tasks, alternatives to the naive Bayes classifier and logistic regression were proposed in the past. In this work, we propose directional-aware support vector machines. We address several realizations of the proposed models, studying their kernelized counterparts and their expressiveness. Finally, we validate the performance of the proposed Support Vector Machines (SVMs) against the directional naive Bayes and directional logistic regression with real data, obtaining competitive results.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Binarized Support Vector Machines
    Carrizosa, Emilio
    Martin-Barragan, Belen
    Morales, Dolores Romero
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 154 - 167
  • [2] Support vector machines
    Mammone, Alessia
    Turchi, Marco
    Cristianini, Nello
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (03) : 283 - 289
  • [3] Support vector machines
    Guenther, Nick
    Schonlau, Matthias
    STATA JOURNAL, 2016, 16 (04) : 917 - 937
  • [4] Support vector machines in remote sensing: A review
    Mountrakis, Giorgos
    Im, Jungho
    Ogole, Caesar
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (03) : 247 - 259
  • [5] Support vector machines with applications
    Moguerza, Javier M.
    Munoz, Alberto
    STATISTICAL SCIENCE, 2006, 21 (03) : 322 - 336
  • [6] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [7] Sparseness of support vector machines
    Steinwart, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (06) : 1071 - 1105
  • [8] Faster Support Vector Machines
    Schlag S.
    Schmitt M.
    Schulz C.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [9] Support Vector Machines in R
    Karatzoglou, A
    Meyer, D
    Hornik, K
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (09):
  • [10] On coresets for support vector machines
    Tukan, Murad
    Baykal, Cenk
    Feldman, Dan
    Rus, Daniela
    THEORETICAL COMPUTER SCIENCE, 2021, 890 (890) : 171 - 191