Directional Support Vector Machines

被引:5
作者
Pernes, Diogo [1 ,2 ]
Fernande, Kelwin [1 ,2 ,3 ]
Cardoso, Jaime S. [1 ,2 ]
机构
[1] INESC TEC, P-4200 Porto, Portugal
[2] Univ Porto, P-4200 Porto, Portugal
[3] NILG AI, P-4200 Porto, Portugal
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 04期
关键词
directional statistics; supervised classification; support vector machines; DISTRIBUTIONS; MIXTURES;
D O I
10.3390/app9040725
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several phenomena are represented by directional-angular or periodic-data; from time references on the calendar to geographical coordinates. These values are usually represented as real values restricted to a given range (e.g., [0, 2 pi)), hiding the real nature of this information. In order to handle these variables properly in supervised classification tasks, alternatives to the naive Bayes classifier and logistic regression were proposed in the past. In this work, we propose directional-aware support vector machines. We address several realizations of the proposed models, studying their kernelized counterparts and their expressiveness. Finally, we validate the performance of the proposed Support Vector Machines (SVMs) against the directional naive Bayes and directional logistic regression with real data, obtaining competitive results.
引用
收藏
页数:19
相关论文
共 23 条
[1]  
[Anonymous], UCI MACHINE LEARNING
[2]  
[Anonymous], IEEE INT C IM PROC
[3]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1345
[4]   Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope [J].
Bock, RK ;
Chilingarian, A ;
Gaug, M ;
Hakl, F ;
Hengstebeck, T ;
Jirina, M ;
Klaschka, J ;
Kotrc, E ;
Savicky, P ;
Towers, S ;
Vaiclulis, A ;
Wittek, W .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 516 (2-3) :511-528
[5]  
Chang C. C., 2011, ACM T INTEL SYST TEC, V2, P1, DOI DOI 10.1145/1961189.1961199
[6]  
Fan RE, 2005, J MACH LEARN RES, V6, P1889
[7]   Discriminative directional classifiers [J].
Fernandes, Kelwin ;
Cardoso, Jaime S. .
NEUROCOMPUTING, 2016, 207 :141-149
[8]   A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News [J].
Fernandes, Kelwin ;
Vinagre, Pedro ;
Cortez, Paulo .
PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 :535-546
[9]  
Freire Ananda L., 2009, 2009 6th Latin American Robotics Symposium (LARS 2009), DOI 10.1109/LARS.2009.5418323
[10]   A supervised machine learning algorithm for arrhythmia analysis [J].
Guvenir, HA ;
Acar, B ;
Demiroz, G ;
Cekin, A .
COMPUTERS IN CARDIOLOGY 1997, VOL 24, 1997, 24 :433-436