ESTIMATION IN MULTIVARIATE t LINEAR MIXED MODELS FOR MULTIPLE LONGITUDINAL DATA

被引:37
|
作者
Wang, Wan-Lun [1 ]
Fan, Tsai-Hung [2 ]
机构
[1] Feng Chia Univ, Dept Stat, Taichung 40724, Taiwan
[2] Natl Cent Univ, Grad Inst Stat, Jhongli 32001, Taiwan
关键词
AR(p); ECME algorithm; outliers; random effects; score test; MAXIMUM-LIKELIHOOD INFERENCE; BAYESIAN-ANALYSIS; DISTRIBUTIONS; ECM; ALGORITHM; EM;
D O I
10.5705/ss.2009.306
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multivariate linear mixed model (MLMM) is a frequently used tool for a joint analysis of more than one series of longitudinal data. Motivated by a concern of sensitivity to potential outliers or data with longer-than-normal tails and possible serial correlation, we develop a robust generalization of the MLMM that is constructed by using the multivariate t distribution and a parsimonious AR(p) dependence structure for the within-subject errors. A score test for the inspection of autocorrelation among within-subject errors is derived. A hybrid ECME-scoring procedure is developed for computing the maximum likelihood estimates with standard errors as a by-product. The methodology is illustrated through an application to a set of AIDS data and several simulation studies.
引用
收藏
页码:1857 / 1880
页数:24
相关论文
共 50 条
  • [41] Testing for Random Effects in Linear Mixed Models for Longitudinal Data under Moment Conditions
    Zai Xing LI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (03) : 497 - 514
  • [42] The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data
    Verbeke, G
    Lesaffre, E
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (04) : 541 - 556
  • [43] Testing for random effects in linear mixed models for longitudinal data under moment conditions
    Zai Xing Li
    Li Xing Zhu
    Ping Wu
    Jian Hong Wu
    Wang Li Xu
    Acta Mathematica Sinica, English Series, 2010, 26 : 497 - 514
  • [44] Testing for random effects in linear mixed models for longitudinal data under moment conditions
    Li, Zai Xing
    Zhu, Li Xing
    Wu, Ping
    Wu, Jian Hong
    Xu, Wang Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (03) : 497 - 514
  • [45] Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features
    Zhang, Hanze
    Huang, Yangxin
    Wang, Wei
    Chen, Henian
    Langland-Orban, Barbara
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 569 - 588
  • [46] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jiang, Jie
    Liu, Xinsheng
    Yu, Keming
    COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1485 - 1500
  • [47] Use of robust multivariate linear mixed models for estimation of genetic parameters for carcass traits in beef cattle
    Peters, S. O.
    Kizilkaya, K.
    Garrick, D. J.
    Fernando, R. L.
    Pollak, E. J.
    Enns, R. M.
    De Donato, M.
    Ajayi, O. O.
    Imumorin, I. G.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2014, 131 (06) : 504 - 512
  • [48] The t linear mixed model: model formulation, identifiability and estimation
    Regis, Marta
    Brini, Alberto
    Nooraee, Nazanin
    Haakma, Reinder
    van den Heuvel, Edwin R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2318 - 2342
  • [49] Robust estimation in generalized linear mixed models
    Yau, KKW
    Kuk, AYC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 101 - 117
  • [50] A Semiparametric Estimation Approach for Linear Mixed Models
    Li, Daniel
    Wang, Liqun
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (11) : 1982 - 1997