ESTIMATION IN MULTIVARIATE t LINEAR MIXED MODELS FOR MULTIPLE LONGITUDINAL DATA

被引:37
|
作者
Wang, Wan-Lun [1 ]
Fan, Tsai-Hung [2 ]
机构
[1] Feng Chia Univ, Dept Stat, Taichung 40724, Taiwan
[2] Natl Cent Univ, Grad Inst Stat, Jhongli 32001, Taiwan
关键词
AR(p); ECME algorithm; outliers; random effects; score test; MAXIMUM-LIKELIHOOD INFERENCE; BAYESIAN-ANALYSIS; DISTRIBUTIONS; ECM; ALGORITHM; EM;
D O I
10.5705/ss.2009.306
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multivariate linear mixed model (MLMM) is a frequently used tool for a joint analysis of more than one series of longitudinal data. Motivated by a concern of sensitivity to potential outliers or data with longer-than-normal tails and possible serial correlation, we develop a robust generalization of the MLMM that is constructed by using the multivariate t distribution and a parsimonious AR(p) dependence structure for the within-subject errors. A score test for the inspection of autocorrelation among within-subject errors is derived. A hybrid ECME-scoring procedure is developed for computing the maximum likelihood estimates with standard errors as a by-product. The methodology is illustrated through an application to a set of AIDS data and several simulation studies.
引用
收藏
页码:1857 / 1880
页数:24
相关论文
共 50 条
  • [31] Linear mixed-effects model for multivariate longitudinal compositional data
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    NEUROCOMPUTING, 2019, 335 : 48 - 58
  • [32] Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution
    Pinheiro, JC
    Liu, CH
    Wu, YN
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (02) : 249 - 276
  • [33] Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data
    Lin, Tsung I.
    Lee, Jack C.
    STATISTICS IN MEDICINE, 2008, 27 (09) : 1490 - 1507
  • [34] Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models
    Raffa, Jesse D.
    Dubin, Joel A.
    BIOMETRICS, 2015, 71 (03) : 821 - 831
  • [35] State-space models for multivariate longitudinal data of mixed types
    Jorgensen, B
    LundbyeChristensen, S
    Song, PXK
    Sun, L
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (03): : 385 - 402
  • [36] Spatial generalized linear mixed models with multivariate CAR models for areal data
    Torabi, Mahmoud
    SPATIAL STATISTICS, 2014, 10 : 12 - 26
  • [37] D-optimal population designs in linear mixed effects models for multiple longitudinal data
    Jiang, Hongyan
    Yue, Rongxian
    STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (02) : 88 - 94
  • [38] ROBUST ESTIMATION IN PARTIAL LINEAR MIXED MODEL FOR LONGITUDINAL DATA
    秦国友
    朱仲义
    Acta Mathematica Scientia, 2008, (02) : 333 - 347
  • [39] Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution
    Garay, Aldo M.
    Castro, Luis M.
    Leskow, Jacek
    Lachos, Victor H.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (02) : 542 - 566
  • [40] Robust estimation in partial linear mixed model for longitudinal data
    Qin Guoyou
    Zhu Zhongyi
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (02) : 333 - 347