A collocation method for solving some integral equations in distributions

被引:0
作者
Indratno, Sapto W. [1 ,2 ]
Ramm, Alexander G. [1 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Bandung Inst Technol, Dept Math, Bandung, Indonesia
关键词
Integral equations in distributions; Signal estimation; Collocation method;
D O I
10.1016/j.cam.2011.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A collocation method is presented for the numerical solution of a typical integral equation Rh := integral(D) R(x. y)h(y)dy = f (x), x is an element of (D) over bar of the class R. whose kernels are of positive rational functions of arbitrary selfadjoint elliptic operators defined in the whole space R(r), and D subset of R(r) is a bounded domain. Several numerical examples are given to demonstrate the efficiency and stability of the proposed method. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1296 / 1313
页数:18
相关论文
共 10 条
[1]  
[Anonymous], 1984, Methods of Numerical Integration
[2]  
KANTOROVICH LV, 1980, FUNCTIONAL ANAL
[3]  
Mikhlin S.G., 1986, Singular integral operators
[4]  
Ramm A.G., 1980, THEORY APPL SOME NEW
[6]  
RAMM AG, 1991, COMPUT MATH APPL, V22, P1
[7]  
RAMM AG, 2010, INT J PURE APPL MATH, V62
[8]  
Ramm AG., 2005, RANDOM FIELDS ESTIMA, DOI DOI 10.1142/5970
[9]   ESTIMATING THE ERROR IN THE TRAPEZOIDAL RULE [J].
ROZEMA, E .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02) :124-128
[10]  
SCHUMAKER LARRY, 2007, SPLINE FUNCTIONS BAS