On the interpolation of discontinuous functions

被引:0
作者
Campiti, Michele [1 ]
Mazzone, Giusy [1 ]
Tacelli, Cristian [1 ]
机构
[1] Univ Salento, Dept Math E De Giorgi, I-73100 Lecce, Italy
关键词
Interpolation; Discontinuous functions; Statistical convergence; Lerch zeta function; Hurwitz zeta function; APPROXIMATION; OPERATORS;
D O I
10.1016/j.jat.2012.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a sequence of real numbers, we consider its subsequences converging to possibly different limits and associate to each of them an index of convergence which depends on the density of the associated subsequences. This index turns out to be useful for a detailed description of some phenomena in interpolation theory at points of discontinuity of the first kind. In particular we give some applications to Lagrange operators on Chebyshev nodes of the first and the second kind and Shepard operators. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:731 / 753
页数:23
相关论文
共 13 条
[1]  
[Anonymous], C PUBL AM MATH SOC
[2]   On the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators [J].
Bojanic, R ;
Della Vecchia, B ;
Mastroianni, G .
ACTA MATHEMATICA HUNGARICA, 1999, 85 (1-2) :29-57
[3]   Behavior of bivariate interpolation operators at points of discontinuity of the first kind [J].
Campiti, Michele ;
Mazzone, Giusy ;
Tacelli, Cristian .
NOTE DI MATEMATICA, 2011, 31 (01) :43-66
[4]  
Connor J. S., 1988, ANALYSIS, V8, P47, DOI DOI 10.1524/ANLY.1988.8.12.47
[5]  
DELLAVECCHIA B, 1995, NATO ADV SCI INST SE, V454, P335
[6]   Statistical approximation by positive linear operators [J].
Duman, O ;
Orhan, C .
STUDIA MATHEMATICA, 2004, 161 (02) :187-197
[7]   Statistical limit superior and limit inferior [J].
Fridy, JA ;
Orhan, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) :3625-3631
[8]   STATISTICAL LIMIT POINTS [J].
FRIDY, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) :1187-1192
[9]  
Fridy JA, 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301
[10]  
Mastroianni G, 2008, SPRINGER MONOGR MATH, P1