Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients

被引:13
作者
Si, Xin [1 ]
Ye, Xia [2 ,3 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
[2] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 05期
关键词
Incompressible MHD; Density-dependent viscosity; Density-dependent resistivity; Global well-posedness; NAVIER-STOKES EQUATIONS; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMICS; DISSIPATION; EXISTENCE; VACUUM; SYSTEM;
D O I
10.1007/s00033-016-0722-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns an initial-boundary value problem of the inhomogeneous incompressible MHD equations in a smooth bounded domain. The viscosity and resistivity coefficients are density-dependent. The global well-posedness of strong solutions is established, provided the initial norms of velocity and magnetic field are suitably small in some sense, or the lower bound of the transport coefficients are large enough. More importantly, there is not any smallness condition on the density and its gradient.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
Abidi H, 2008, P ROY SOC EDINB A, V138, P447
[2]  
Abidi Hammadi., 2007, Annales mathematiques Blaise Pascal, V14, P103
[3]  
CABANNES H., 1970, Theoretical Magnetofluiddynamics
[4]   THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION [J].
Cao, Chongsheng ;
Wu, Jiahong ;
Yuan, Baoquan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :588-602
[5]   The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion [J].
Cao, Chongsheng ;
Regmi, Dipendra ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2661-2681
[6]   Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J].
Cao, Chongsheng ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1803-1822
[7]   Unique solvability for the density-dependent Navier-Stokes equations [J].
Cho, YG ;
Kim, HS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (04) :465-489
[8]   Existence result for heat-conducting viscous incompressible fluids with vacuum [J].
Cho, Yonggeun ;
Kim, Hyunseok .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) :645-681
[9]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[10]  
GERBEAU J., 1997, Adv. Differential Equations, V2, P427