The local exterior square L-function: Holomorphy, non-vanishing and Shalika functionals

被引:14
|
作者
Kewat, Pramod Kumar [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Representation theory; Integral representations of L-functions; REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2011.08.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a smooth, irreducible, square integrable representation of GL(m)(F), where F is a non-archimedean local field of characteristic zero. We prove that the exterior square L-function L-JS(s, pi, boolean AND(2)) defined via an integral representation due to Jacquet and Shalika is regular and non-vanishing in the region Re(s) > 0. We also investigate the behavior of the L-function L-JS(S, pi, boolean AND(2)) at s = 0, and show that if the function L-JS(s, pi, boolean AND(2)) has a pole at s = 0 then pi has a non-zero Shalika functional. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 172
页数:20
相关论文
共 12 条