Quantum Monte Carlo Study of Buckled GaAs Monolayer

被引:2
作者
Sharma, Rajesh O. [1 ]
Saini, Lalit K. [1 ]
Bahuguna, Bhagwati Prasad [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol Surat, Appl Phys Dept, Surat 395007, India
关键词
crystal structures; modeling; Monte Carlo simulation; nanolayers; solid-state structure; ELECTRON-GAS; GERMANENE; ENERGIES; RISE;
D O I
10.1002/masy.201600206
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We have investigated the ground state properties of buckled GaAs monolayer using density functional theory (DFT) and quantum Monte Carlo (QMC) method. Standard first-principles approaches such as DFT with approximate exchange-correlation functionals do not describe the correlation effect accurately and hence, usually cannot predict results within the chemical accuracy. In order to accurate evaluation of correlation energy that makes a small but very important contribution to the total energy of an electronic system, the quantum Monte Carlo methods are used which include the correlation effect of electron-electron using Jastrow function. We found QMC energies are few tenths eV lower than the DFT energies and the buckled GaAs monolayer have direct the band gap of 1.46 eV within DFT calculations, whereas quasiparticle gap is 3.4(8) eV within QMC calculations. We have also calculated the electron affinity and ionization potential as a function of system size.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] The Sign Problem in Density Matrix Quantum Monte Carlo
    Petras, Hayley R.
    Van Benschoten, William Z.
    Ramadugu, Sai Kumar
    Shepherd, James J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6036 - 6052
  • [32] Interaction picture density matrix quantum Monte Carlo
    Malone, Fionn D.
    Blunt, N. S.
    Shepherd, James J.
    Lee, D. K. K.
    Spencer, J. S.
    Foulkes, W. M. C.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (04)
  • [33] Applications of the worldline Monte Carlo formalism in quantum mechanics
    Edwards, James P.
    Gerber, Urs
    Schubert, Christian
    Trejo, Maria Anabel
    Tsiftsi, Thomai
    Weber, Axel
    ANNALS OF PHYSICS, 2019, 411
  • [34] Monte Carlo simulation of the growth of semiconductor quantum wires
    Mitin, V
    Kersulis, S
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1996, 37 (1-3): : 17 - 24
  • [35] Discovering correlated fermions using quantum Monte Carlo
    Wagner, Lucas K.
    Ceperley, David M.
    REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (09)
  • [36] Quantum-corrected Monte Carlo study of nano-scale InGaAs MOSFETs
    Watanabe, Hisanao
    Homma, Takahiro
    Takegishi, Takayuki
    Hirasawa, Yuki
    Hirata, Yuko
    Hara, Shinsuke
    Fujishiro, Hiroki I.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 2, 2011, 8 (02): : 306 - 309
  • [37] Magnetic and thermodynamic behaviors of the graphene-like quantum dots: A Monte Carlo study
    Sun, Lei
    Wang, Wei
    Lv, Dan
    Gao, Zhong-yue
    Li, Qi
    Li, Bo-chen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 528
  • [38] Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid
    Drummond, N. D.
    Needs, R. J.
    PHYSICAL REVIEW B, 2009, 79 (08)
  • [39] Monte Carlo Simulation on Li Monolayer System Adsorbed on Cu(001) Surface
    Hayashi, Tohru
    Mitani, Hisashi
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2005, 3 : 492 - 496
  • [40] Monte Carlo simulation of GaAs(001) surface smoothing in equilibrium conditions
    Kazantsev, D. M.
    Akhundov, I. O.
    Karpov, A. N.
    Shwartz, N. L.
    Alperovich, V. L.
    Terekhov, A. S.
    Latyshev, A. V.
    APPLIED SURFACE SCIENCE, 2015, 333 : 141 - 146