Mixed finite element methods for stationary incompressible magneto-hydrodynamics

被引:203
作者
Schötzau, D [1 ]
机构
[1] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
关键词
D O I
10.1007/s00211-003-0487-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new mixed variational formulation of the equations of stationary incompressible magneto-hydrodynamics is introduced and analyzed. The formulation is based on curl-conforming Sobolev spaces for the magnetic variables and is shown to be well-posed in (possibly non-convex) Lipschitz polyhedra. A finite element approximation is proposed where the hydrodynamic unknowns are discretized by standard inf-sup stable velocity-pressure space pairs and the magnetic ones by a mixed approach using Nedelec's elements of the first kind. An error analysis is carried out that shows that the proposed finite element approximation leads to quasi-optimal error bounds in the mesh-size.
引用
收藏
页码:771 / 800
页数:30
相关论文
共 33 条
[21]  
GUNZBURGER MD, 1991, MATH COMPUT, V56, P523, DOI 10.1090/S0025-5718-1991-1066834-0
[22]  
Hiptmair R, 2002, ACT NUMERIC, V11, P237
[23]   Multigrid method for Maxwell's equations [J].
Hiptmair, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :204-225
[24]  
Hughes W., 1966, ELECTROMAGNETICS FLU
[25]  
Monk P., 2003, FINITE ELEMENT METHO
[26]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[27]   A NEW FAMILY OF MIXED FINITE-ELEMENTS IN R3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1986, 50 (01) :57-81
[28]   INCOMPRESSIBLE MIXED FINITE-ELEMENTS FOR STOKES EQUATIONS [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :97-112
[29]   Mixed finite elements for incompressible magneto-hydrodynamics [J].
Schneebeli, A ;
Schötzau, D .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (01) :71-74
[30]  
TEMAN R, 1984, NAVIERSTOKES EQUATIO