CNS distribution of members of the two-pore-domain (KCNK) potassium channel family

被引:455
作者
Talley, EM
Solórzano, G
Lei, QB
Kim, D
Bayliss, DA
机构
[1] Univ Virginia, Dept Pharmacol, Charlottesville, VA 22908 USA
[2] Finch Univ Hlth Sci Chicago Med Sch, Dept Physiol & Biophys, N Chicago, IL 60064 USA
关键词
potassium channel; in situ hybridization; KCNK; TASK; TREK; TRAAK; TWIK;
D O I
10.1523/JNEUROSCI.21-19-07491.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Two-pore-domain potassium (K+) channels are substrates for resting K+ currents in neurons. They are major targets for endogenous modulators, as well as for clinically important compounds such as volatile anesthetics. In the current study, we report on the CNS distribution in the rat and mouse of mRNA encoding seven two-pore-domain K+ channel family members: TASK-1 (KCNK3), TASK-2 (KCNK5), TASK-3 (KCNK9), TREK-1 (KCNK2), TREK-2 (KCNK10), TRAAK (KCNK4), and TWIK-1 (KCNK1). All of these genes were expressed in dorsal root ganglia, and for all of the genes except TASK-2, there was a differential distribution in the CNS. For TASK-1, highest mRNA accumulation was seen in the cerebellum and somatic motoneurons. TASK-3 was much more widely distributed, with robust expression in all brain regions, with particularly high expression in somatic motoneurons, cerebellar granule neurons, the locus ceruleus, and raphe nuclei and in various nuclei of the hypothalamus. TREK-1 was highest in the striatum and in parts of the cortex (layer IV) and hippocampus (CA2 pyramidal neurons). mRNA for TRAAK also was highest in the cortex, whereas expression of TREK-2 was primarily restricted to the cerebellar granule cell layer. There was widespread distribution of TWIK-1, with highest levels in the cerebellar granule cell layer, thalamic reticular nucleus, and piriform cortex. The differential expression of each of these genes likely contributes to characteristic excitability properties in distinct populations of neurons, as well as to diversity in their susceptibility to modulation.
引用
收藏
页码:7491 / 7505
页数:15
相关论文
共 49 条
  • [1] TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family
    Bang, H
    Kim, Y
    Kim, D
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) : 17412 - 17419
  • [2] Axonal transport of TREK and TRAAK potassium channels in rat sciatic nerves
    Bearzatto, B
    Lesage, F
    Reyes, R
    Lazdunski, M
    Laduron, PM
    [J]. NEUROREPORT, 2000, 11 (05) : 927 - 930
  • [3] Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance
    Brickley, SG
    Revilla, V
    Cull-Candy, SG
    Wisden, W
    Farrant, M
    [J]. NATURE, 2001, 409 (6816) : 88 - 92
  • [4] Chapman CG, 2000, MOL BRAIN RES, V82, P74
  • [5] Colbert CM, 1999, J NEUROSCI, V19, P8163
  • [6] Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family
    Decher, N
    Maier, M
    Dittrich, W
    Gassenhuber, J
    Brüggemann, A
    Busch, AE
    Steinmeyer, K
    [J]. FEBS LETTERS, 2001, 492 (1-2) : 84 - +
  • [7] DEMIERA EVS, 2000, SOC NEUR ABSTR, V26
  • [8] TASK, a human background K+ channel to sense external pH variations near physiological pH
    Duprat, F
    Lesage, F
    Fink, M
    Reyes, R
    Heurteaux, C
    Lazdunski, M
    [J]. EMBO JOURNAL, 1997, 16 (17) : 5464 - 5471
  • [9] Duprat F, 2000, MOL PHARMACOL, V57, P906
  • [10] A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids
    Fink, M
    Lesage, F
    Duprat, F
    Heurteaux, C
    Reyes, R
    Fosset, M
    Lazdunski, M
    [J]. EMBO JOURNAL, 1998, 17 (12) : 3297 - 3308