Influence of Co doping on crystal structure and electrochemical performances of LiNi0.5Mn1.5O4

被引:10
|
作者
Wang, H. [1 ]
Li, J. [1 ]
Yang, S. [1 ]
Zhang, B. [1 ]
Xiao, J. [1 ]
Ren, R. [1 ]
Cui, J. [1 ]
Xiao, W. [2 ]
机构
[1] Ningxia Univ, Sch Phys Elect Informat Engn, Adv Energy Storage Mat & Devices Lab, Ningxia 750021, Peoples R China
[2] Jiangsu Huafu Storage New Technol Dev Co Ltd, Gaoyou 225600, Peoples R China
基金
中国国家自然科学基金;
关键词
LiNi0.5Mn1.5O4; Lithium ion batteries; Cathode material; Doping; Crystal structure; Electrochemical performances; LITHIUM ION BATTERIES; CATHODE MATERIAL; RATE CAPABILITY; COATED LINI0.5MN1.5O4; SPINEL; IMPROVEMENT; PROGRESS; LIMN2O4;
D O I
10.1179/17535557A15Y.000000008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To investigate the influence of Co doping on spinel LiNi0.5Mn1.5O4 cathode, LiNi0.4Co0.1Mn1.5O4 and LiNi0.35Co0.1Mn1.5O4 were designed and successfully synthesised through a polymer assisted method. Inductively coupled plasma, X-ray diffraction, Fourier transform infrared spectra and X-ray photoelectron spectroscopy tests have been carried out. Results show that the compositions of the synthesised samples are consistent with the designed compositions, and Co doping could decrease the degree of cation ordering; Co doping together with octahedral vacancies could induce higher concentration of Mn3+ in the spinel structure. The result of cyclic voltammetry test suggests LiNi0.35Co0.1Mn1.5O4 has the best conductivity, and LiNi0.35Co0.1Mn1.5O4 exhibited the best rate capability among the three spinel cathodes.
引用
收藏
页码:A75 / A78
页数:4
相关论文
共 50 条
  • [31] Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning
    Zhong, Shengkui
    Hu, Piao
    Luo, Xia
    Zhang, Xiaoping
    Wu, Ling
    IONICS, 2016, 22 (11) : 2037 - 2044
  • [32] Low tempderature synthesis of LiNi0.5Mn1.5O4 spinel
    Fang, HS
    Wang, ZX
    Li, XH
    Guo, HJ
    Peng, WJ
    MATERIALS LETTERS, 2006, 60 (9-10) : 1273 - 1275
  • [33] Excellent electrochemical performances of high-voltage LiNi0.5Mn1.5O4 hollow microspheres synthesized by a static co-precipitation method
    Ren, Xiaoli
    Wang, Yirong
    Xiao, Qizhen
    Lei, Gangtie
    Li, Zhaohui
    MATERIALS LETTERS, 2019, 248 : 97 - 100
  • [34] Affecting Mechanism of Fe Doping in Spinel LiNi0.5Mn1.5O4
    Liu Guoqiang
    Li Xueping
    Li Ying
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 (07) : 1755 - 1759
  • [35] Influence of Roasting Temperature on Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode for Lithium-Ion Battery
    Niu, Lei
    Geng, Shan
    Li, Hongliang
    Du, Songli
    Cui, Xiaoling
    Li, Shiyou
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (02)
  • [36] Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel via ethylene glycol-assisted synthesis
    Zhang, Xianfa
    Liu, Jing
    Yu, Haiying
    Yang, Guiling
    Wang, Jiawei
    Yu, Zijia
    Xie, Haiming
    Wang, Rongshun
    ELECTROCHIMICA ACTA, 2010, 55 (07) : 2414 - 2417
  • [37] A Comparative Study of Synthesis Processes for LiNi0.5Mn1.5O4 Cathode Material
    Ma, Chao
    Wang, Lei
    Yang, Huanping
    Liu, Hong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (08): : 8170 - 8178
  • [38] Effect of lithium and fluorine doping on the electrochemical and thermal stability of LiNi0.5Mn1.5O4 spinel cathode material
    Li, Haiyan
    Luo, Ying
    Xie, Jingying
    Zhang, Quansheng
    Yan, Liqin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 639 : 346 - 351
  • [39] Characterization and Electrochemical Properties of LiNi0.5Mn1.5O4 Prepared by a Carbonate Co-Precipitation Method
    Gu, Yi-Jie
    Zang, Qing-Feng
    Liu, Hong-Quan
    Ding, Jian-Xu
    Wang, Yan-Ming
    Wang, Hai-Feng
    Zhang, Jun
    Wei, Wen-Ge
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (12): : 7712 - 7724
  • [40] Effect of Hydrazine on the Performance of LiNi0.5Mn1.5O4 Cathode Materials
    Chang Zhao-Rong
    Dai Dong-Mei
    Li Bao
    Tang Hong-Wei
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (10) : 2633 - 2637