Monitoring Invasion Process of Spartina alterniflora by Seasonal Sentinel-2 Imagery and an Object-Based Random Forest Classification

被引:44
|
作者
Tian, Yanlin [1 ,2 ]
Jia, Mingming [1 ]
Wang, Zongming [1 ,3 ]
Mao, Dehua [1 ]
Du, Baojia [1 ]
Wang, Chao [4 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Wetland Ecol & Environm, Changchun 130102, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Earth Syst Sci Data Ctr China, Beijing 100101, Peoples R China
[4] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Spartina alterniflora; invasion process; growing season; dormant season; Sentinel-2; imagery; LANDSAT; 8; OLI; SEGMENTATION; ACCURACY; WETLAND; COVER; ALGORITHMS; DYNAMICS; CHINA; SCALE; MANGROVES;
D O I
10.3390/rs12091383
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the late 1990s, the exotic plant Spartina alterniflora (S. alterniflora), was introduced to the Zhangjiang Estuary of China for tidal zone reclamation and protection. However, it invaded rapidly and has caused serious ecological problems. Accurate information on the seasonal invasion of S. alterniflora is vital to understand invasion pattern and mechanism, especially at a high temporal resolution. This study aimed to explore the S. alterniflora invasion process at a seasonal scale from 2016 to 2018. However, due to the uncertainties caused by periodic inundation of local tides, accurately monitoring the spatial extent of S. alterniflora is challenging. Thus, to achieve the goal and address the challenge, we firstly built a high-quality seasonal Sentinel-2 image collection by developing a new submerged S. alterniflora index (SAI) to reduce the errors caused by high tide fluctuations. Then, an object-based random forest (RF) classification method was applied to the image collection. Finally, seasonal extents of S. alterniflora were captured. Results showed that (1) the red edge bands (bands 5, 6, and 7) of Sentinel-2 imagery played critical roles in delineating submerged S. alterniflora; (2) during March 2016 to November 2018, the extent of S. alterniflora increased from 151.7 to 270.3 ha, with an annual invasion rate of 39.5 ha; (3) S. alterniflora invaded with a rate of 31.5 ha/season during growing season and 12.1 ha/season during dormant season. To our knowledge, this is the first study monitoring S. alterniflora invasion process at a seasonal scale during continuous years, discovering that S. alterniflora also expands during dormant seasons. This discovery is of great significance for understanding the invasion pattern and mechanism of S. alterniflora and will facilitate coastal biodiversity conservation efforts.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Object-based classification of hyperspectral data using Random Forest algorithm
    Amini, Saeid
    Homayouni, Saeid
    Safari, Abdolreza
    Darvishsefat, Ali A.
    GEO-SPATIAL INFORMATION SCIENCE, 2018, 21 (02) : 127 - 138
  • [22] Object-based crop classification in Hetao plain using random forest
    Su, Tengfei
    Zhang, Shengwei
    EARTH SCIENCE INFORMATICS, 2021, 14 (01) : 119 - 131
  • [23] Classification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery
    Tonbul, H.
    Colkesen, I
    Kavzoglu, T.
    JOURNAL OF GEODETIC SCIENCE, 2020, 10 (01) : 14 - 22
  • [24] Object-based crop classification in Hetao plain using random forest
    Tengfei Su
    Shengwei Zhang
    Earth Science Informatics, 2021, 14 : 119 - 131
  • [25] PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine
    Vizzari, Marco
    REMOTE SENSING, 2022, 14 (11)
  • [26] Random Forest Classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France)
    Niculescu, Simona
    Billey, Antoine
    Talab-Ouali, Halima
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [27] Estimating the Urban Fractional Vegetation Cover Using an Object-Based Mixture Analysis Method and Sentinel-2 MSI Imagery
    Cai, Yaotong
    Zhang, Meng
    Lin, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 341 - 350
  • [28] Study on the Influencing Factors of Forest Tree-Species Classification Based on Landsat and Sentinel-2 Imagery
    Lai, Xin
    Tang, Xu
    Ren, Zhaotong
    Li, Yuecan
    Huang, Runlian
    Chen, Jianjun
    You, Haotian
    FORESTS, 2024, 15 (09):
  • [29] Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery
    Wang, Limei
    Jin, Guowang
    Xiong, Xin
    Zhang, Hongmin
    Wu, Ke
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (08)
  • [30] Microphytobenthos spatio-temporal dynamics across an intertidal gradient using Random Forest classification and Sentinel-2 imagery
    Haro, S.
    Jesus, B.
    Oiry, S.
    Papaspyrou, S.
    Lara, M.
    Gonzalez, C. J.
    Corzo, A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804