Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering

被引:50
|
作者
Shapira, Assaf [1 ]
Noor, Nadav [2 ]
Asulin, Masha [2 ]
Dvir, Tal [1 ,2 ,3 ,4 ]
机构
[1] Tel Aviv Univ, Sch Mol Cell Biol & Biotechnol, Fac Life Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Mat Sci & Engn, Fac Engn, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, Israel
[4] Tel Aviv Univ, Sagol Ctr Regenerat Biotechnol, IL-69978 Tel Aviv, Israel
来源
APPLIED PHYSICS REVIEWS | 2018年 / 5卷 / 04期
基金
欧洲研究理事会;
关键词
EXTRACELLULAR-MATRIX; IN-VITRO; FACTOR-XIII; BIOMATERIALS; HYDROGELS; CONSTRUCTS; SCAFFOLDS; BIOFABRICATION; FABRICATION; THROMBIN;
D O I
10.1063/1.5055659
中图分类号
O59 [应用物理学];
学科分类号
摘要
Three dimensional (3D) printing is a revolutionizing technology, which endows engineers, designers, and manufacturers with the ability to rapidly translate digital sketches into physical objects. The advantages that lie in the high resolution and accuracy of this technique were not concealed from the eyes of tissue engineers that soon harnessed this power for fabrication of complex biological structures. Nevertheless, while the conventional 3D printing scheme is oriented to yield durable and sturdy structures, the delicate nature of the substances used in 3D bioprinting results in fragile and mechanically unstable constructs. This poses a significant restriction that needs to be overcome in order to successfully complete the printing of intact, accurate, and biologically relevant constructs with desirable properties. To address these complications, advanced means of stabilization which are applied during and/or following the printing procedure are constantly being developed. In this review, the rational and principles behind widely used stabilization strategies in extrusion-based bioprinting will be covered. Examples of implementation of these strategies in recently published research in the field of tissue engineering will also be presented and discussed. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Microgel-based bioink for extrusion-based 3D bioprinting and its applications in tissue engineering
    Iyer, Keerthi Subramanian
    Bao, Lei
    Zhai, Jiali
    Jayachandran, Aparna
    Luwor, Rodney
    Li, Jiao Jiao
    Li, Haiyan
    BIOACTIVE MATERIALS, 2025, 48 : 273 - 293
  • [2] A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering
    Fornetti, E.
    De Paolis, F.
    Fuoco, C.
    Bernardini, S.
    Giannitelli, S. M.
    Rainer, A.
    Seliktar, D.
    Magdinier, F.
    Baldi, J.
    Biagini, R.
    Cannata, S.
    Testa, S.
    Gargioli, C.
    BIOFABRICATION, 2023, 15 (02)
  • [3] Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering
    Chae, Suhun
    Cho, Dong-Woo
    ACTA BIOMATERIALIA, 2023, 156 : 4 - 20
  • [4] Vascularization strategies for human skin tissue engineering via 3D bioprinting
    Shukla, Arvind Kumar
    Lee, Dongjun
    Yoon, Sik
    Ahn, Minjun
    Kim, Byoung Soo
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (03) : 86 - 115
  • [5] Extrusion-Based 3D Bioprinting of Adhesive Tissue Engineering Scaffolds Using Hybrid Functionalized Hydrogel Bioinks
    Chen, Shuai
    Tomov, Martin L.
    Ning, Liqun
    Gil, Carmen J.
    Hwang, Boeun
    Bauser-Heaton, Holly
    Chen, Haifeng
    Serpooshan, Vahid
    ADVANCED BIOLOGY, 2023, 7 (07):
  • [6] Bioink design for extrusion-based bioprinting
    Zhang, Tao
    Zhao, Wei
    Xiahou, Zijie
    Wang, Xingwang
    Zhang, Kunxi
    Yin, Jingbo
    APPLIED MATERIALS TODAY, 2021, 25
  • [7] 3D Bioprinting in Skeletal Muscle Tissue Engineering
    Ostrovidov, Serge
    Salehi, Sahar
    Costantini, Marco
    Suthiwanich, Kasinan
    Ebrahimi, Majid
    Sadeghian, Ramin Banan
    Fujie, Toshinori
    Shi, Xuetao
    Cannata, Stefano
    Gargioli, Cesare
    Tamayol, Ali
    Dokmeci, Mehmet Remzi
    Orive, Gorka
    Swieszkowski, Wojciech
    Khademhosseini, Ali
    SMALL, 2019, 15 (24)
  • [8] 3D bioprinting and the current applications in tissue engineering
    Huang, Ying
    Zhang, Xiao-Fei
    Gao, Guifang
    Yonezawa, Tomo
    Cui, Xiaofeng
    BIOTECHNOLOGY JOURNAL, 2017, 12 (08)
  • [9] 3D Bioprinting Technologies for Tissue Engineering Applications
    Gu, Bon Kang
    Choi, Dong Jin
    Park, Sang Jun
    Kim, Young-Jin
    Kim, Chun-Ho
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 15 - 28
  • [10] Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering
    You, Fu
    Eames, B. Frank
    Chen, Xiongbiao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (07)