Proteomic analysis of canola root inoculated with bacteria under salt stress

被引:35
|
作者
Banaei-Asl, Farzad [1 ,2 ]
Bandehagh, Au [2 ]
Uliaei, Ebrahim Dorani [2 ]
Farajzadeh, Davoud [3 ]
Salzata, Katsumi [4 ]
Mustafa, Ghazala [1 ]
Komatsu, Setsuko [1 ]
机构
[1] Natl Agr & Food Res Org, Natl Inst Crop Sci, Tsukuba, Ibaraki 3058518, Japan
[2] Univ Tabriz, Dept Plant Breeding & Biotechnol, Tabriz 5166616471, Iran
[3] Azarbaijan Shahid Madani Univ, Dept Cellular & Mol Biol, Tabriz 5375171379, Iran
[4] Maebashi Inst Technol, Maebashi, Gunma 3710816, Japan
关键词
Proteomics; Canola; Root; Plant-growth promoting bacteria; Salt; GROWTH-PROMOTING RHIZOBACTERIA; DYNAMIN-LIKE PROTEIN; PLANT-GROWTH; BRASSICA-NAPUS; SALINITY STRESS; ACC DEAMINASE; NACL STRESS; TOLERANCE; L; ACCUMULATION;
D O I
10.1016/j.jprot.2015.04.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plant-growth promoting bacteria can ameliorate the negative effects of salt stress on canola. To better understand the role of bacteria in canola under salt stress, salt-sensitive (Sarigol) and salt-tolerant (Hyola308) cultivars were inoculated with Pseudomonas fluorescens and protein profiles of roots were compared. Bacterial inoculation increased the dry weight and length of canola roots under salt stress. Using a gel-free proteomic technique, 55 commonly changed proteins were identified in Sarigol and Hyola308 roots inoculated with bacteria under salt stress. In both canola cultivars, proteins related to amino acid metabolism and tricarboxylic acid cycle were affected. Hierarchical cluster analysis divided the identified proteins into three clusters. Proteins related to Clusters II and III, which were secretion-associated RAS super family 1, dynamin-like protein, and histone, were increased in roots of both Sarigol and Hyola308 inoculated with bacteria under salt stress. Based on pathway mapping, proteins related to amino acid metabolism and the tricarboxylic acid cycle significantly changed in canola cultivars inoculated with or without bacteria under salt stress. These results suggest that bacterial inoculation of canola roots increases tolerance to salt stress by proteins related to energy metabolism and cell division. Biological significance Plant-growth promoting bacteria as an emerging aid can ameliorate the negative effect of salt stress on canola. To understand the role of bacteria in canola under salt stress, salt sensitive Sarigol and tolerant Hyola308 cultivars were used. Dry weight and length of canola root were improved by inoculation of bacteria under salt stress. Using gel-free proteomic technique, 55 commonly changed proteins identified in Sarigol and Hyola308 inoculated with bacteria under salt stress. In both canola cultivars, the number of proteins related to amino acid metabolism and tricarboxylic acid cycle was more than other categories with higher change in protein abundance. Hierarchical cluster analysis divided into 3 clusters. Cluster II including secretion-associated RAS super family 1 and dynamin-like protein and Cluster III including histones H2A were increased by bacterial inoculation in both cultivars. Furthermore, pathway mapping highlighted the importance of S-denosylmethionine synthetase and malate dehydrogenase that decreased in canola inoculated with bacteria under salt stress. These results suggest that bacterial inoculation helps the canola to endure salt stress by modulating the proteins related to energy metabolism and cell division. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 111
页数:24
相关论文
共 50 条
  • [1] Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress
    Banaei-Asl, Farzad
    Farajzadeh, Davoud
    Bandehagh, Ali
    Komatsu, Setsuko
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2016, 1864 (09): : 1222 - 1236
  • [2] Comparative proteomic analysis of canola leaves under salinity stress
    Bandehagh, Ali
    Salekdeh, Ghasem Hosseini
    Toorchi, Mahmoud
    Mohammadi, Abolghasem
    Komatsu, Setsuko
    PROTEOMICS, 2011, 11 (10) : 1965 - 1975
  • [3] Proteomic analysis of rice anthers under salt stress
    Sarhadi, Elham
    Bazargani, Mitra Mohammadi
    Sajise, Andres Godwin
    Abdolahi, Shapour
    Vispo, Naireen Aiza
    Arceta, Marydee
    Nejad, Ghasem Mohammadi
    Singh, Rakesh Kumar
    Salekdeh, Ghasem Hosseini
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2012, 58 : 280 - 287
  • [4] Proteomic analysis of salt stress-responsive proteins in rice root
    Yan, SP
    Tang, ZC
    Su, W
    Sun, WN
    PROTEOMICS, 2005, 5 (01) : 235 - 244
  • [5] Proteomic analysis of seed germination under salt stress in soybeans
    Xu, Xiao-yan
    Fan, Rui
    Zheng, Rui
    Li, Chun-mei
    Yu, De-yue
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2011, 12 (07): : 507 - 517
  • [6] Proteomic analysis of seed germination under salt stress in soybeans
    Xiao-yan Xu
    Rui Fan
    Rui Zheng
    Chun-mei Li
    De-yue Yu
    Journal of Zhejiang University SCIENCE B, 2011, 12 : 507 - 517
  • [8] Transcriptome Analysis of Canola (Brassica napus) under Salt Stress at the Germination Stage
    Long, Weihua
    Zou, Xiling
    Zhang, Xuekun
    PLOS ONE, 2015, 10 (02):
  • [9] Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress
    Jellouli, Neila
    Ben Jouira, Hatern
    Skouri, Houda
    Ghorbel, Abdelwahed
    Gourgouri, Ali
    Mliki, Ahmed
    JOURNAL OF PLANT PHYSIOLOGY, 2008, 165 (05) : 471 - 481
  • [10] Physiological and Proteomic Analysis of Seed Germination under Salt Stress in Mulberry
    Wang, Yi
    Jiang, Wei
    Cheng, Junsen
    Guo, Wei
    Li, Yongquan
    Li, Chenlei
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (03):