Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types

被引:154
|
作者
van Unen, Vincent [1 ]
Hollt, Thomas [2 ,3 ]
Pezzotti, Nicola [2 ]
Li, Na [1 ]
Reinders, Marcel J. T. [4 ]
Eisemann, Elmar [2 ]
Koning, Frits [1 ]
Vilanova, Anna [2 ]
Lelieveldt, Boudewijn P. F. [4 ,5 ]
机构
[1] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[2] Delft Univ Technol, Comp Graph & Visualizat Grp, Mekelweg 4, NL-2628 CD Delft, Netherlands
[3] Leiden Univ, Med Ctr, Computat Biol Ctr, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[4] Delft Univ Technol, Pattern Recognit & Bioinformat Grp, Mekelweg 4, NL-2628 CD Delft, Netherlands
[5] Leiden Univ, Med Ctr, Div Image Proc, Dept Radiol, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
关键词
INNATE LYMPHOID-CELLS; IMMUNE; SPACE;
D O I
10.1038/s41467-017-01689-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mass cytometry allows high-resolution dissection of the cellular composition of the immune system. However, the high-dimensionality, large size, and non-linear structure of the data poses considerable challenges for the data analysis. In particular, dimensionality reduction-based techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can be analyzed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the analysis of mass cytometry data sets. HSNE constructs a hierarchy of non-linear similarities that can be interactively explored with a stepwise increase in detail up to the single-cell level. We apply HSNE to a study on gastrointestinal disorders and three other available mass cytometry data sets. We find that HSNE efficiently replicates previous observations and identifies rare cell populations that were previously missed due to downsampling. Thus, HSNE removes the scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the analysis of massive high-dimensional data sets.
引用
收藏
页数:10
相关论文
共 2 条
  • [1] DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data
    Cheng, Lijun
    Karkhanis, Pratik
    Gokbag, Birkan
    Liu, Yueze
    Li, Lang
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (04)
  • [2] Combining Mass Cytometry Data by CyTOFmerge Reveals Additional Cell Phenotypes in the Heterogeneous Ovarian Cancer Tumor Microenvironment: A Pilot Study
    Thomsen, Liv Cecilie Vestrheim
    Kleinmanns, Katrin
    Anandan, Shamundeeswari
    Gullaksen, Stein-Erik
    Abdelaal, Tamim
    Iversen, Grete Alrek
    Akslen, Lars Andreas
    Mccormack, Emmet
    Bjorge, Line
    CANCERS, 2023, 15 (20)