Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing

被引:45
|
作者
Kalavacharla, Venu [1 ,5 ]
Liu, Zhanji [1 ]
Meyers, Blake C. [2 ,3 ]
Thimmapuram, Jyothi [4 ]
Melmaiee, Kalpalatha [1 ]
机构
[1] Delaware State Univ, Coll Agr & Related Sci, Dover, DE 19901 USA
[2] Univ Delaware, Delaware Biotechnol Inst, Newark, DE 19711 USA
[3] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19711 USA
[4] Univ Illinois, WM Keck Ctr Comparat & Funct Genom, Urbana, IL 61801 USA
[5] Delaware State Univ, Ctr Integrated Biol & Environm Res, Dover, DE 19901 USA
来源
BMC PLANT BIOLOGY | 2011年 / 11卷
基金
美国国家科学基金会;
关键词
MEDICAGO-TRUNCATULA; SSR-MARKERS; EST DATABASES; ARABIDOPSIS; SEQUENCE; GENOME; DNA; MICROSATELLITES; POLYMORPHISM; INTEGRATION;
D O I
10.1186/1471-2229-11-135
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Common bean (Phaseolus vulgaris) is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results: We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt). These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC) end sequences, and a total of 21% of the unigenes (12,724) including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs) and transcription factors were also identified in this study. Conclusions: This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and will aid in the development of molecular markers that can be used for tagging genes of interest. Additionally, these sequences will provide a means for better annotation of the on-going common bean whole genome sequencing.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Impact of soil moisture on common bean (Phaseolus vulgaris L.) phytochemicals
    Denise Herrera, Mayra
    Reynoso-Camacho, Rosalia
    Melero-Meraz, Valentin
    Guzman-Maldonado, Salvador H.
    Acosta-Gallegos, Jorge A.
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2021, 99
  • [42] Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency
    Abdelmajid, Krouma
    Karim, Ben Hamed
    Chedly, Abdelly
    ACTA PHYSIOLOGIAE PLANTARUM, 2008, 30 (01) : 27 - 34
  • [43] Optimization of an indirect regeneration system for common bean (Phaseolus vulgaris L.)
    Luxi Xiong
    Chang Liu
    Dajun Liu
    Zhishan Yan
    Xiaoxu Yang
    Guojun Feng
    Plant Biotechnology Reports, 2023, 17 : 821 - 833
  • [44] AN IMPROVED METHOD FOR in vitro REGENERATION OF COMMON BEAN (Phaseolus vulgaris L.)
    Quintero-Jimenez, Anareli
    Espinosa-Huerta, Elsa
    Alberto Acosta-Gallegos, J.
    Salvador Guzman-Maldonado, H.
    Alejandra Mora-Aviles, M.
    AGROCIENCIA, 2010, 44 (01) : 57 - 64
  • [45] The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review
    Shamseldin, Abdelaal
    Velazquez, Encarna
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2020, 36 (05):
  • [46] Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency
    Krouma Abdelmajid
    Ben Hamed Karim
    Abdelly Chedly
    Acta Physiologiae Plantarum, 2008, 30 : 27 - 34
  • [47] Agronomic performance of common bean (Phaseolus vulgaris L.) lines in an Oxisol
    Dorcinvil, Ronald
    Sotomayor-Ramirez, David
    Beaver, James
    FIELD CROPS RESEARCH, 2010, 118 (03) : 264 - 272
  • [48] Optimization of an indirect regeneration system for common bean (Phaseolus vulgaris L.)
    Xiong, Luxi
    Liu, Chang
    Liu, Dajun
    Yan, Zhishan
    Yang, Xiaoxu
    Feng, Guojun
    PLANT BIOTECHNOLOGY REPORTS, 2023, 17 (06) : 821 - 833
  • [49] Diseases caused by soil fungi in common bean (Phaseolus vulgaris L.)
    Diaz Castellanos, Manuel
    Quintero, Edilio
    Bernal Cabrera, Alexander
    Reinaldo, Yanet
    CENTRO AGRICOLA, 2005, 32 (03): : 43 - 46
  • [50] Molecular cytogenetic characterization of common bean (Phaseolus vulgaris L.) accessions
    Tuna, Gulsemin Savas
    Yucel, Gulru
    Asciogul, Tansel Kaygisiz
    Ates, Duygu
    Esiyok, Dursun
    Tanyolac, Muhammed Bahattin
    Tuna, Metin
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2020, 44 (06) : 612 - 630