Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing

被引:45
|
作者
Kalavacharla, Venu [1 ,5 ]
Liu, Zhanji [1 ]
Meyers, Blake C. [2 ,3 ]
Thimmapuram, Jyothi [4 ]
Melmaiee, Kalpalatha [1 ]
机构
[1] Delaware State Univ, Coll Agr & Related Sci, Dover, DE 19901 USA
[2] Univ Delaware, Delaware Biotechnol Inst, Newark, DE 19711 USA
[3] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19711 USA
[4] Univ Illinois, WM Keck Ctr Comparat & Funct Genom, Urbana, IL 61801 USA
[5] Delaware State Univ, Ctr Integrated Biol & Environm Res, Dover, DE 19901 USA
来源
BMC PLANT BIOLOGY | 2011年 / 11卷
基金
美国国家科学基金会;
关键词
MEDICAGO-TRUNCATULA; SSR-MARKERS; EST DATABASES; ARABIDOPSIS; SEQUENCE; GENOME; DNA; MICROSATELLITES; POLYMORPHISM; INTEGRATION;
D O I
10.1186/1471-2229-11-135
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Common bean (Phaseolus vulgaris) is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results: We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt). These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC) end sequences, and a total of 21% of the unigenes (12,724) including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs) and transcription factors were also identified in this study. Conclusions: This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and will aid in the development of molecular markers that can be used for tagging genes of interest. Additionally, these sequences will provide a means for better annotation of the on-going common bean whole genome sequencing.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)
    M. W. Blair
    M. C. Giraldo
    H. F. Buendía
    E. Tovar
    M. C. Duque
    S. E. Beebe
    Theoretical and Applied Genetics, 2006, 113 : 100 - 109
  • [22] Incidence of Hemiptera in the cultivation of common bean (Phaseolus vulgaris L.)
    Gomez Sousa, Jorge
    Ramos Gonzalez, Yordanys
    Arbolaez Hernandez, Hector P.
    Perez Quintanilla, Edel
    Gonzalez Perez, Mabel
    CENTRO AGRICOLA, 2009, 36 (04): : 15 - 18
  • [23] SNP marker diversity in common bean (Phaseolus vulgaris L.)
    Cortes, Andres J.
    Chavarro, Martha C.
    Blair, Matthew W.
    THEORETICAL AND APPLIED GENETICS, 2011, 123 (05) : 827 - 845
  • [24] Yield stability in common bean (Phaseolus vulgaris L.) genotypes
    Frew Mekbib
    Euphytica, 2003, 130 : 147 - 153
  • [25] Development of new cultivars of common bean (Phaseolus vulgaris, L.)
    Ranalli, P
    Parisi, B
    Govoni, F
    Del Re, P
    PROCEEDINGS OF THE XXV INTERNATIONAL HORTICULTURAL CONGRESS, PT 12: APPLICATION OF BIOTECHNOLOGY AND MOLECULAR BIOLOGY AND BREEDING, GENERAL BREEDING, AND EVALUATION OF TEMPERATE ZONE FRUITS FOR THE TROPICS AND SUBTROPICS, 2000, (522): : 181 - 185
  • [26] Biotechnology approaches in common bean (Phaseolus vulgaris L.) breeding
    Saglam, Sevil
    JOURNAL OF BIOTECHNOLOGY, 2016, 231 : S17 - S17
  • [27] MOLECULAR DIVERSITY OF COMMON BEAN (PHASEOLUS VULGARIS L.) CULTIVARS
    Filimon, Raluca
    Nechifor, B.
    Szilagyi, Lizica
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2011, 54 : 344 - 349
  • [28] Breeding for bean fly resistance in common bean (Phaseolus vulgaris L.): a review
    Nkhata, Wilson
    Shimelis, Hussein
    Melis, Rob
    Chirwa, Rowland
    Mzengeza, Tenyson
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2019, 69 (03): : 275 - 285
  • [29] Genome-Wide Identification of Powdery Mildew Resistance in Common Bean (Phaseolus vulgaris L.)
    Binagwa, Papias H.
    Traore, Sy M.
    Egnin, Marceline
    Bernard, Gregory C.
    Ritte, Inocent
    Mortley, Desmond
    Kamfwa, Kelvin
    He, Guohao
    Bonsi, Conrad
    FRONTIERS IN GENETICS, 2021, 12
  • [30] Meta-QTL Analysis for Yield Components in Common Bean (Phaseolus vulgaris L.)
    Arriagada, Osvin
    Arevalo, Barbara
    Cabeza, Ricardo A.
    Carrasco, Basilio
    Schwember, Andres R.
    PLANTS-BASEL, 2023, 12 (01):