Identification of Semiconductive Patches in Thermally Processed Monolayer Oxo-Functionalized Graphene

被引:42
作者
Wang, Zhenping [1 ]
Yao, Qirong [2 ]
Neumann, Christof [3 ]
Boerrnert, Felix [4 ,5 ]
Renner, Julian [4 ]
Kaiser, Ute [4 ]
Turchanin, Andrey [3 ]
Zandvliet, Harold J. W. [2 ]
Eigler, Siegfried [1 ]
机构
[1] Free Univ Berlin, Inst Chem & Biochem, Takustr 3, D-14195 Berlin, Germany
[2] Univ Twente, Phys Interfaces & Nanomat, NL-7500 AE Enschede, Netherlands
[3] Friedrich Schiller Univ Jena, Inst Phys Chem, Lessingstr 10, D-07743 Jena, Germany
[4] Univ Ulm, Zentrale Einrichtung Elektronenmikroskopie, Albert Einstein Allee 11, D-89081 Ulm, Germany
[5] Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Germany
关键词
electrical transport properties; graphene oxide; microscopy; oxo-functionalized graphene; semiconductors; IN-SITU; OXIDE; CHEMISTRY; CARBON; REDUCTION; SPECTROSCOPY; MICROSCOPY;
D O I
10.1002/anie.202004005
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo-functionalized graphene (oxo-G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo-G flake and correlated the chemical composition and topography corrugation by two-probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo-G, processed at 300 degrees C, displays C-C sp(3)-patches and possibly C-O-C bonds, next to graphene domains and holes. It is striking that those C-O-C/C-C sp(3)-separated sp(2)-patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp(3)-patches confine conjugated sp(2)-C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp(3)-C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.
引用
收藏
页码:13657 / 13662
页数:6
相关论文
共 50 条
[1]  
[Anonymous], 2019, ANGEW CHEM, V131, P3637
[2]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[3]   Amorphous Carbon under 80 kV Electron Irradiation: A Means to Make or Break Graphene [J].
Boerrnert, Felix ;
Avdoshenko, Stanislav M. ;
Bachmatiuk, Alicja ;
Ibrahim, Imad ;
Buechner, Bernd ;
Cuniberti, Gianaurelio ;
Ruemmeli, Mark H. .
ADVANCED MATERIALS, 2012, 24 (41) :5630-5635
[4]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[5]   Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials [J].
Cao, Li ;
Meziani, Mohammed J. ;
Sahu, Sushant ;
Sun, Ya-Ping .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (01) :171-180
[6]   Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films [J].
Chang, Haixin ;
Sun, Zhenhua ;
Yuan, Qinghong ;
Ding, Feng ;
Tao, Xiaoming ;
Yan, Feng ;
Zheng, Zijian .
ADVANCED MATERIALS, 2010, 22 (43) :4872-+
[7]   Chemical reduction of graphene oxide: a synthetic chemistry viewpoint [J].
Chua, Chun Kiang ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :291-312
[8]   Chemistry and Structure of Graphene Oxide via Direct Imaging [J].
Dave, Shreya H. ;
Gong, Chuncheng ;
Robertson, Alex W. ;
Warner, Jamie H. ;
Grossman, Jeffrey C. .
ACS NANO, 2016, 10 (08) :7515-7522
[9]   Pristine Graphite Oxide [J].
Dimiev, Ayrat ;
Kosynkin, Dmitry V. ;
Alemany, Lawrence B. ;
Chaguine, Pavel ;
Tour, James M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (05) :2815-2822
[10]   Synthesis and reduction of large sized graphene oxide sheets [J].
Dong, Lei ;
Yang, Jieun ;
Chhowalla, Manish ;
Loh, Kian Ping .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (23) :7306-7316