Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths

被引:38
作者
Henkin, G
Passare, M
机构
[1] Univ Paris 06, UFR Math Pures & Appl, F-75252 Paris 05, France
[2] Stockholm Univ, Inst Matemat, S-10691 Stockholm, Sweden
关键词
D O I
10.1007/s002220050287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare various notions of meromorphic and holomorphic differential forms on (singular) analytic varieties. In particular we find that every meromorphic form gives rise to a canonical principal value current with support in the variety. Demanding that this current be <(partial derivative)over bar>-closed we obtain a useful analytic description of the dualizing sheaf. We then go on to generalize the Lie-Griffiths theorem: On one hand it is shown that a rational trace is enough to ensure algebraicity of the data. On the other hand we prove that zero trace implies that the form is holomorphic in the sense of currents. In fact, we prove a more general, local version of the theorem.
引用
收藏
页码:297 / 328
页数:32
相关论文
共 29 条
[11]  
LELONG P, 1957, B SOC MATH FRANCE, V85, P239, DOI DOI 10.24033/BSMF.1488
[12]  
Leray J., 1959, Bull. Soc. Math. France, V87, P81, DOI [10.24033/bsmf.1515, DOI 10.24033/BSMF.1515]
[13]  
Levi EE., 1910, Ann. Math, V17, P61
[14]  
Lie S., 1882, ARCH MATH, V7, P155
[15]  
LITTLE JB, 1987, J DIFFER GEOM, V26, P253
[16]   RESIDUES, CURRENTS, AND THEIR RELATION TO IDEALS OF HOLOMORPHIC-FUNCTIONS [J].
PASSARE, M .
MATHEMATICA SCANDINAVICA, 1988, 62 (01) :75-152
[17]  
PASSARE M, 1988, J REINE ANGEW MATH, V392, P37
[18]   RESIDUES AND DUALITY [J].
RAMIS, JP ;
RUGET, G .
INVENTIONES MATHEMATICAE, 1974, 26 (02) :89-131
[19]  
REMMERT R, 1953, MATH ANN, V126, P263, DOI 10.1007/BF01343164
[20]  
Rothstein W., 1950, MATH Z, V53, P84