Time Evolution of Deformation in a Human Cartilage Under Cyclic Loading

被引:50
作者
Zhang, Lihai [1 ]
Miramini, Saeed [1 ]
Smith, David W. [2 ]
Gardiner, Bruce S. [2 ]
Grodzinsky, Alan J. [3 ,4 ,5 ,6 ]
机构
[1] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic 3010, Australia
[2] Univ Western Australia, Fac Engn Comp & Math, Crawley, WA 6009, Australia
[3] MIT, Ctr Biomed Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
英国医学研究理事会;
关键词
Cartilage; Aggrecan; Computational modelling; Large deformation; Exudation strain; Compressive stiffness; Permeability; ANISOTROPIC HYDRAULIC PERMEABILITY; FINITE-ELEMENT MODEL; ARTICULAR-CARTILAGE; MECHANICAL-PROPERTIES; SOLUTE TRANSPORT; COMPRESSION; CHONDROCYTE; CONSOLIDATION; BIOSYNTHESIS; FORMULATION;
D O I
10.1007/s10439-014-1164-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent imaging has revealed that in vivo contact deformations of human knee cartilage under physiological loadings are surprisingly large-typically on the order of 10%, but up to 20 or 30% of tibiofemora cartilage thickness depending on loading conditions. In this paper we develop a biphasic, large deformation, non-linear poroelastic model of cartilage that can accurately represent the time dependence and magnitude of cyclic cartilage deformations in vivo. The model takes into account cartilage tension-compression nonlinearity and a new constitutive relation in which the compressive stiffness and hydraulic permeability of the cartilage adjusts in response to the strain-dependent aggrecan concentration. The model predictions are validated using experimental test results on osteochondral plugs obtained from human cadavers. We find that model parameters can be optimised to give an excellent fit to the experimental data. Using typical hydraulic conductivity and stiffness parameters for healthy cartilage, we find that the experimentally observed transient and steady state tissue deformations under cyclic loading and unloading can be reproduced by the model. Steady state tissue deformations are shown to cycle between 10% (exudation strain) and 20% (total strain) in response to the cyclic test loads. At steady-state cyclic loading, the pore fluid exuded from the tissue is exactly equal to the pore fluid imbibed by the tissue during each load cycle.
引用
收藏
页码:1166 / 1177
页数:12
相关论文
共 60 条
[1]  
[Anonymous], COMSOL MULT
[2]   The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage [J].
Ateshian, GA ;
Chahine, NO ;
Basalo, IM ;
Hung, CT .
JOURNAL OF BIOMECHANICS, 2004, 37 (03) :391-400
[3]   Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment [J].
Bachrach, NM ;
Valhmu, WB ;
Stazzone, E ;
Ratcliffe, A ;
Lai, WM ;
Mow, VC .
JOURNAL OF BIOMECHANICS, 1995, 28 (12) :1561-1569
[4]   The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? [J].
Barker, MK ;
Seedhom, BB .
RHEUMATOLOGY, 2001, 40 (03) :274-284
[5]   Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique [J].
Basser, PJ ;
Schneiderman, R ;
Bank, RA ;
Wachtel, E ;
Maroudas, A .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1998, 351 (02) :207-219
[6]   Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage [J].
Bonassar, LJ ;
Grodzinsky, AJ ;
Srinivasan, A ;
Davila, SG ;
Trippel, SB .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 379 (01) :57-63
[7]   Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis [J].
Bursac, PM ;
Obitz, TW ;
Eisenberg, SR ;
Stamenovic, D .
JOURNAL OF BIOMECHANICS, 1999, 32 (10) :1125-1130
[8]  
BUSCHMANN MD, 1995, J CELL SCI, V108, P1497
[9]   Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow [J].
Buschmann, MD ;
Kim, YJ ;
Wong, M ;
Frank, E ;
Hunziker, EB ;
Grodzinsky, AJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 366 (01) :1-7
[10]   Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature [J].
Chahine, NO ;
Chen, FH ;
Hung, CT ;
Ateshian, GA .
BIOPHYSICAL JOURNAL, 2005, 89 (03) :1543-1550