Two-dimensional fluctuating vesicles in linear shear flow

被引:51
作者
Finken, R. [1 ]
Lamura, A. [2 ]
Seifert, U. [1 ]
Gompper, G. [3 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 2, D-70550 Stuttgart, Germany
[2] CNR, Ist Appl Calcolo, I-70126 Bari, Italy
[3] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
关键词
D O I
10.1140/epje/i2007-10299-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stochastic motion of a two-dimensional vesicle in linear shear flow is studied at finite temperature. In the limit of small deformations from a circle, Langevin-type equations of motion are derived, which are highly nonlinear due to the constraint of constant perimeter length. These equations are solved in the low-temperature limit and using a mean-field approach, in which the length constraint is satisfied only on average. The constraint imposes non-trivial correlations between the lowest deformation modes at low temperature. We also simulate a vesicle in a hydrodynamic solvent by using the multi-particle collision dynamics technique, both in the quasi-circular regime and for larger deformations, and compare the stationary deformation correlation functions and the time autocorrelation functions with theoretical predictions. Good agreement between theory and simulations is obtained.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 42 条
[1]   Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force [J].
Abkarian, M ;
Lartigue, C ;
Viallat, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (06) :4
[2]   Optimal lift force on vesicles near a compressible substrate [J].
Beaucourt, J ;
Biben, T ;
Misbah, C .
EUROPHYSICS LETTERS, 2004, 67 (04) :676-682
[3]   Steady to unsteady dynamics of a vesicle in a flow -: art. no. 011906 [J].
Beaucourt, J ;
Rioual, F ;
Séon, T ;
Biben, T ;
Misbah, C .
PHYSICAL REVIEW E, 2004, 69 (01) :17
[4]   Tumbling of vesicles under shear flow within an advected-field approach [J].
Biben, T ;
Misbah, C .
PHYSICAL REVIEW E, 2003, 67 (03) :5
[5]   Lift force and dynamical unbinding of adhering vesicles under shear flow [J].
Cantat, I ;
Misbah, C .
PHYSICAL REVIEW LETTERS, 1999, 83 (04) :880-883
[6]   Dynamics and rheology of a dilute suspension of vesicles: Higher-order theory [J].
Danker, Gerrit ;
Biben, Thierry ;
Podgorski, Thomas ;
Verdier, Claude ;
Misbah, Chaouqi .
PHYSICAL REVIEW E, 2007, 76 (04)
[7]   Deformation of giant lipid bilayer vesicles in shear flow [J].
de Haas, KH ;
Blom, C ;
van den Ende, D ;
Duits, MHG ;
Mellema, J .
PHYSICAL REVIEW E, 1997, 56 (06) :7132-7137
[8]  
Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
[9]  
GOMPPER G, 2004, STAT MECH MEMBRANES, P390
[10]  
Happel J., 1983, Low Reynolds number hydrodynamics: with special applications to particulate media, V1