Thermal loading on self-seeding monochromators in x-ray free electron lasers

被引:9
作者
Qu, Zhengxian [1 ,2 ]
Ma, Yanbao [1 ]
Zhou, Guanqun [2 ]
Wu, Juhao [2 ]
机构
[1] Univ Calif Merced, Dept Mech Engn, Merced, CA 95343 USA
[2] Stanford Univ, SLAG Natl Accelerator Lab, Stanford, CA 94309 USA
基金
美国国家科学基金会;
关键词
Hard X-ray; Self-seeding; Thermal load; Monochromator; SYNCHROTRON-RADIATION; DIAMOND CRYSTAL; OPERATION; OPTICS;
D O I
10.1016/j.nima.2020.163936
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
One approach to achieve longitudinally coherent hard X-ray free electron laser (XFEL) radiation is to introduce a single-crystal monochromator in the beam path to generate a co-propagating, time-synchronized self-seeding radiation pulse. For modern high-repetition rate XFELs, however, thermal loading on the crystal can degrade the quality of the seed pulse. To assess limitations on the maximum XFEL pulse repetition rate imposed by the seeding crystal, a comprehensive study of thermomechanical, and X-ray diffraction effects within the crystal is presented for two consecutive self-amplified spontaneous emission pulses incident on both reflective and transmissive crystal monochromators.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] Operation of a free-electron laser from the extreme ultraviolet to the water window
    Ackermann, W.
    Asova, G.
    Ayvazyan, V.
    Azima, A.
    Baboi, N.
    Baehr, J.
    Balandin, V.
    Beutner, B.
    Brandt, A.
    Bolzmann, A.
    Brinkmann, R.
    Brovko, O. I.
    Castellano, M.
    Castro, P.
    Catani, L.
    Chiadroni, E.
    Choroba, S.
    Cianchi, A.
    Costello, J. T.
    Cubaynes, D.
    Dardis, J.
    Decking, W.
    Delsim-Hashemi, H.
    Delserieys, A.
    Di Pirro, G.
    Dohlus, M.
    Duesterer, S.
    Eckhardt, A.
    Edwards, H. T.
    Faatz, B.
    Feldhaus, J.
    Floettmann, K.
    Frisch, J.
    Froehlich, L.
    Garvey, T.
    Gensch, U.
    Gerth, Ch.
    Goerler, M.
    Golubeva, N.
    Grabosch, H.-J.
    Grecki, M.
    Grimm, O.
    Hacker, K.
    Hahn, U.
    Han, J. H.
    Honkavaara, K.
    Hott, T.
    Huening, M.
    Ivanisenko, Y.
    Jaeschke, E.
    [J]. NATURE PHOTONICS, 2007, 1 (06) : 336 - 342
  • [2] Amann J, 2012, NAT PHOTONICS, V6, P693, DOI [10.1038/nphoton.2012.180, 10.1038/NPHOTON.2012.180]
  • [3] DIAMOND CRYSTAL X-RAY OPTICS FOR HIGH-POWER-DENSITY SYNCHROTRON RADIATION BEAMS
    BERMAN, LE
    HASTINGS, JB
    SIDDONS, DP
    KOIKE, M
    STOJANOFF, V
    HART, M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 329 (03) : 555 - 563
  • [4] COLLECTIVE INSTABILITIES AND HIGH-GAIN REGIME IN A FREE-ELECTRON LASER
    BONIFACIO, R
    PELLEGRINI, C
    NARDUCCI, LM
    [J]. OPTICS COMMUNICATIONS, 1984, 50 (06) : 373 - 378
  • [5] Influence of thermal self-action on the diffraction of high-power X-ray pulses
    Bushuev V.A.
    [J]. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, 10 (6) : 1179 - 1186
  • [6] Effect of the thermal heating of a crystal on the diffraction of pulses of a free-electron X-ray laser
    V. A. Bushuev
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (1) : 15 - 20
  • [7] Emma P, 2010, NAT PHOTONICS, V4, P641, DOI [10.1038/nphoton.2010.176, 10.1038/NPHOTON.2010.176]
  • [8] Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL
    Feldhaus, J
    Saldin, EL
    Schneider, JR
    Schneidmiller, EA
    Yurkov, MV
    [J]. OPTICS COMMUNICATIONS, 1997, 140 (4-6) : 341 - 352
  • [9] Review of fully coherent free-electron lasers
    Feng, Chao
    Deng, Hai-Xiao
    [J]. NUCLEAR SCIENCE AND TECHNIQUES, 2018, 29 (11)
  • [10] A novel self-seeding scheme for hard X-ray FELs
    Geloni, Gianluca
    Kocharyan, Vitali
    Saldin, Evgeni
    [J]. JOURNAL OF MODERN OPTICS, 2011, 58 (16) : 1391 - 1403