A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels

被引:59
作者
Mezghrani, Alexandre [1 ,2 ]
Monteil, Arnaud [1 ,2 ]
Watschinger, Katrin [3 ,4 ]
Sinnegger-Brauns, Martina J. [2 ,3 ,4 ]
Barrere, Christian [1 ,2 ]
Bourinet, Emmanuel [1 ,2 ]
Nargeot, Joel [1 ,2 ]
Striessnig, Joerg [3 ,4 ]
Lory, Philippe [1 ,2 ]
机构
[1] Inst Genom Fonct, INSERM, CNRS, Unite Mixte Rech 5203,Unite 661, F-34094 Montpellier, France
[2] Univ Montpellier, F-34094 Montpellier, France
[3] Univ Innsbruck, Abt Pharmakol & Toxikol, Inst Pharm, A-6020 Innsbruck, Austria
[4] Univ Innsbruck, Ctr Mol Biowissensch Innsbruck, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
voltage-gated calcium channel; P/Q-type; T-type; dominant-negative activity; episodic ataxia type 2; misfolding; endoplasmic reticulum; proteasome;
D O I
10.1523/JNEUROSCI.2844-07.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Channelopathies are often linked to defective protein folding and trafficking. Among them, the calcium channelopathy episodic ataxia type-2 (EA2) is an autosomal dominant disorder related to mutations in the pore-forming Ca(v)2.1 subunit of P/Q-type calcium channels. Although EA2 is linked to loss of Ca(v)2.1 channel activity, the molecular mechanism underlying dominant inheritance remains unclear. Here, we show that EA2 mutants as well as a truncated form ( D(I-II)) of the Ca(v)3.2 subunit of T-type calcium channel are misfolded, retained in the endoplasmic reticulum, and subject to proteasomal degradation. Pulse-chase experiments revealed that misfolded mutants bind to nascent wild-type Ca(v) subunits and induce their subsequent degradation, thereby abolishing channel activity. We conclude that this destructive interaction mechanism promoted by Ca(v) mutants is likely to occur in EA2 and in other inherited dominant channelopathies.
引用
收藏
页码:4501 / 4511
页数:11
相关论文
共 50 条
  • [11] Gelman Marina S, 2003, Methods Mol Biol, V232, P27
  • [12] Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2
    Guida, S
    Trettel, F
    Pagnutti, S
    Mantuano, E
    Tottene, A
    Veneziano, L
    Fellin, T
    Spadaro, M
    Stauderman, KA
    Williams, ME
    Volsen, S
    Ophoff, RA
    Frants, RR
    Jodice, C
    Frontali, M
    Pietrobon, D
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (03) : 759 - 764
  • [13] Transmembrane auxiliary subunits of voltage-dependent ion channels
    Gurnett, CA
    Campbell, KP
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (45) : 27975 - 27978
  • [14] Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
    Harding, HP
    Zhang, YH
    Ron, D
    [J]. NATURE, 1999, 397 (6716) : 271 - 274
  • [15] Transcriptional and translational control in the mammalian unfolded protein response
    Harding, HP
    Calfon, M
    Urano, F
    Novoa, I
    Ron, D
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2002, 18 : 575 - 599
  • [16] Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel
    Hsu, K
    Seharaseyon, J
    Dong, PH
    Bour, S
    Marbán, E
    [J]. MOLECULAR CELL, 2004, 14 (02) : 259 - 267
  • [17] AUXILIARY SUBUNITS OF VOLTAGE-GATED ION CHANNELS
    ISOM, LL
    DEJONGH, KS
    CATTERALL, WA
    [J]. NEURON, 1994, 12 (06) : 1183 - 1194
  • [18] Familial episodic ataxias and related ion channel disorders
    Joanna Jen
    [J]. Current Treatment Options in Neurology, 2000, 2 (5) : 429 - 431
  • [19] Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels
    Jeng, Chung-Jiuan
    Sun, Min-Chen
    Chen, Yi-Wen
    Tang, Chih-Yung
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 2008, 214 (02) : 422 - 433
  • [20] Dominant-negative effects of human P/Q-type Ca2+ channel mutations associated with episodic ataxia type 2
    Jeng, CJ
    Chen, YT
    Chen, YW
    Tang, CY
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2006, 290 (04): : C1209 - C1220