Hamilton's gradient estimates for fast diffusion equations under the Ricci flow

被引:4
|
作者
Li, Hailong [1 ]
Bai, Haibo [2 ]
Zhang, Guangying [3 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Dept Math, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast diffusion equation; Ricci flow; Gradient estimates; Hamilton inequality;
D O I
10.1016/j.jmaa.2016.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a complete noncompact Riemannian manifold of dimension n. We derive a Hamilton's gradient estimate for positive solutions of the fast diffusion equations partial derivative u/partial derivative t = Delta u(m), 1 - 4/n + 8 < m < 1 on M x (-infinity, 0] under the Ricci flow. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1372 / 1379
页数:8
相关论文
共 50 条