Hamilton's gradient estimates for fast diffusion equations under the Ricci flow

被引:4
作者
Li, Hailong [1 ]
Bai, Haibo [2 ]
Zhang, Guangying [3 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Dept Math, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast diffusion equation; Ricci flow; Gradient estimates; Hamilton inequality;
D O I
10.1016/j.jmaa.2016.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a complete noncompact Riemannian manifold of dimension n. We derive a Hamilton's gradient estimate for positive solutions of the fast diffusion equations partial derivative u/partial derivative t = Delta u(m), 1 - 4/n + 8 < m < 1 on M x (-infinity, 0] under the Ricci flow. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1372 / 1379
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2006, OXFORD LECT SERIES M
[2]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[3]   ASYMPTOTIC-BEHAVIOR OF THE NON-LINEAR DIFFUSION EQUATION NT = (N-1NX)X [J].
BERRYMAN, JG ;
HOLLAND, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :983-987
[5]   The classification of locally conformally flat Yamabe solitons [J].
Daskalopoulos, Panagiota ;
Sesum, Natasa .
ADVANCES IN MATHEMATICS, 2013, 240 :346-369
[6]  
Daskalopoulos P, 2007, EMS TRACTS MATH, V1, P1
[7]   WETTING - STATICS AND DYNAMICS [J].
DEGENNES, PG .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :827-863
[8]   On the Extinction Profile for Solutions of ut = Δu(N-2)/(N+2) [J].
del Ping, M ;
Sáez, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :611-628
[9]  
HAMILTON R. S., 1988, Contemp. Math, V71, p237 262, DOI DOI 10.1090/CONM/071/954419
[10]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113