Time domain validation of ultracapacitor fractional order model

被引:38
|
作者
Dzielinski, Andrzej [1 ]
Sarwas, Grzegorz [1 ]
Sierociuk, Dominik [1 ]
机构
[1] Warsaw Univ Technol, Inst Control & Ind Elect, PL-00662 Warsaw, Poland
关键词
CALCULUS;
D O I
10.1109/CDC.2010.5717093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the modeling of the ultracapacitor using fractional order model is shown. The derivation of time domain response of the ultracapacitor and system with the ultracapacitor is presented. The results of frequency domain identification were used to validate the response of the ultracapacitor in time domain. All theoretical results are compared with the response of the physical system with the ultracapacitor. Then the issue of capacity for the ultracapacitors is shown and discussed.
引用
收藏
页码:3730 / 3735
页数:6
相关论文
共 50 条
  • [31] Centralized model matching integer/fractional-order controller design for multivariable processes with real-time validation
    Muthukumari, S.
    Kanagalakshmi, S.
    Kumar, T. K. Sunil
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (09) : 1828 - 1841
  • [32] Time domain and frequency domain model order reduction for discrete time-delay systems
    Wang, Zhao-Hong
    Jiang, Yao-Lin
    Xu, Kang-Li
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (12) : 2134 - 2149
  • [33] Advanced Fractional-Order Lithium-Ion Capacitor Model With Time-Domain Parameter Identification Method
    Song, Shuang
    Zhang, Xiong
    An, Yabin
    Ma, Yanwei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 13808 - 13817
  • [34] Optimal approximation of fractional-order systems with model validation using CFOA
    Mahata, Shibendu
    Kar, Rajib
    Mandal, Durbadal
    IET SIGNAL PROCESSING, 2019, 13 (09) : 787 - 797
  • [35] Frequency Domain Behavior Study of Supercapacitor Based on Fractional-order Model
    Yan, Mengdi
    Wei, Li
    Song, Peng
    2019 IEEE 4TH INTERNATIONAL FUTURE ENERGY ELECTRONICS CONFERENCE (IFEEC), 2019,
  • [36] CIM applications in fractional domain: Fractional-order universal filter & fractional-order oscillator
    Varshney, Garima
    Pandey, Neeta
    Minaei, Shahram
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2022, 156
  • [37] LFT uncertain model validation with time and frequency domain measurements
    Xu, DM
    Ren, Z
    Gu, GX
    Chen, J
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 145 - 150
  • [38] AN EXPERIMENTAL VALIDATION OF THE TIME-VARYING INITIALIZATION RESPONSE IN FRACTIONAL-ORDER SYSTEMS
    Gambone, Tom
    Hartley, Tom T.
    Lorenzo, Carl F.
    Adams, Jay L.
    Veillette, Robert J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 115 - 122
  • [39] Validation of Integer and Fractional Order PI Controllers for a Real Time Non Linear Process
    Pannem, Vinay K.
    KalyanChakravarthi, M.
    Venkatesan, Nithya
    2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 84 - 89
  • [40] Fractional-order PID Dynamic Matrix Control Algorithm based on Time Domain
    Guo, Wei
    Wen, Jinghong
    Zhou, Wangping
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 208 - 212