共 22 条
Bifurcation of nontrivial periodic solutions for a Beddington-DeAngelis interference model with impulsive biological control
被引:17
作者:
Wang, Shuai
[1
]
Huang, Qingdao
[1
]
机构:
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Predator-pest model;
Periodic releases;
Permanence;
Existence of nontrivial solution;
PULSE VACCINATION STRATEGY;
MATHEMATICAL-MODEL;
EPIDEMIC MODEL;
DYNAMICS;
PREDATOR;
THERAPY;
SYSTEM;
D O I:
10.1016/j.apm.2014.09.011
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this paper, a Beddington-DeAngelis interference model with impulsive biological control is studied. The pest-free periodic solution is local asymptotically stable if the impulsive control rate is larger than a critical value or the release period is smaller than another critical value. Conditions for permanence of the model are established. The existence of nontrivial periodic solution is established when the pest-free periodic solution loses its stability. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1470 / 1479
页数:10
相关论文