Bifurcation of nontrivial periodic solutions for a Beddington-DeAngelis interference model with impulsive biological control

被引:17
作者
Wang, Shuai [1 ]
Huang, Qingdao [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-pest model; Periodic releases; Permanence; Existence of nontrivial solution; PULSE VACCINATION STRATEGY; MATHEMATICAL-MODEL; EPIDEMIC MODEL; DYNAMICS; PREDATOR; THERAPY; SYSTEM;
D O I
10.1016/j.apm.2014.09.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a Beddington-DeAngelis interference model with impulsive biological control is studied. The pest-free periodic solution is local asymptotically stable if the impulsive control rate is larger than a critical value or the release period is smaller than another critical value. Conditions for permanence of the model are established. The existence of nontrivial periodic solution is established when the pest-free periodic solution loses its stability. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1470 / 1479
页数:10
相关论文
共 22 条
[1]  
Agur Z., 1993, P NATL ACAD SCI USA, V90, P698
[2]  
[Anonymous], 1999, Fields Inst. Commun.
[3]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, V66
[4]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[5]   On the dynamics of predator-prey models with the Beddington-DeAngelis functional response [J].
Cantrell, RS ;
Cosner, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (01) :206-222
[6]   Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999) [J].
d'Onofrio, A ;
Gandolfi, A .
MATHEMATICAL BIOSCIENCES, 2004, 191 (02) :159-184
[7]   Stability properties of pulse vaccination strategy in SEIR epidemic model [J].
d'Onofrio, A .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :57-72
[8]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[9]  
Lakmeche A, 2000, DYN CONTIN DISCRET I, V7, P265
[10]   Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors [J].
Lakmeche, A ;
Arino, O .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2001, 2 (04) :455-465