Light leaves and Lusztig's conjecture

被引:19
作者
Libedinsky, Nicolas [1 ]
机构
[1] Univ Chile, Fac Ciencias, Santiago, Chile
关键词
Soergel bimodules; Lusztig's conjecture; Algebraic groups; Representation theory; AFFINE LIE-ALGEBRAS; REPRESENTATION-THEORY; NEGATIVE LEVEL; COMBINATORICS; LOCALIZATION; BIMODULES; SHEAVES;
D O I
10.1016/j.aim.2015.04.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a map F with domain a certain subset of the set of light leaves (certain morphisms between Soergel bimodules introduced by the author in an earlier paper) and range the set of prime numbers. Using results of Soergel we prove the following property of F: if the image p = F(l) of some light leaf l under F is bigger than the Coxeter number of the corresponding Weyl group, then there is a counterexample to Lusztig's conjecture in characteristic p. We also introduce the "double leaves basis" which is an improvement of the light leaves basis that has already found interesting applications. In particular it forms a cellular basis of Soergel bimodules that allows us to produce an algorithm to find "the bad primes" for Lusztig's conjecture. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:772 / 807
页数:36
相关论文
共 44 条
[1]  
Andersen H. H., 1994, ASTERISQUE, V220, P321
[2]  
[Anonymous], ARXIV13095055
[3]  
[Anonymous], 2006, PROCEEDING INT C MAT
[4]  
[Anonymous], ARXIV13090865
[5]   Perverse sheaves on affine flags and langlands dual group [J].
Arkhipov, Sergey ;
Bezrukavnikov, Roman .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :135-183
[6]   Singular localization and intertwining functors for reductive Lie algebras in prime characteristic [J].
Bezrukavnikov, Roman ;
Mirkovic, Ivan ;
Rumynin, Dmitriy .
NAGOYA MATHEMATICAL JOURNAL, 2006, 184 :1-55
[7]   Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution [J].
Bezrukavnikov, Roman ;
Mirkovic, Ivan .
ANNALS OF MATHEMATICS, 2013, 178 (03) :835-919
[8]   Localization of modules for a semisimple Lie algebra in prime characteristic [J].
Bezrukavnikov, Roman ;
Mirkovic, Ivan ;
Rumynin, Dmtriy .
ANNALS OF MATHEMATICS, 2008, 167 (03) :945-991
[9]  
Bourbaki N., 1968, ELEMENTS MATH GROUPE
[10]  
CARTER RW, 1972, COMPOS MATH, V25, P1